Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a+b+c+b+c+d+c+d+a+a+b+d=3(a+b+c+d)=-5+-8+7+-15=-21
=> a+b+c+d=-21/3=-7
Vậy a=-7-(-8)=1
b=-7-7=-14
c=-7-(-15)=8
d=-7-(-5)=-2
Ta thấy a + b + c = -5 (1)
b+c+d=-8(2)
c+d+a=7(3)
a+b+d=-15(4)
cộng (1)với (2);(3);(4)
ta được
3a+3b+3c+3d=-5+(-8)+7+(-15)
3(a+b+c+d)=-21
a+b+c+d=-21:3
a+b+c+d=-7
=>số nguyên a là -7-(-8)=1
số nguyên b là -7-7=-14
số nguyên c là -7 - ( -15)=8
số nguyên d là -7 - (-5) = -2
a) ta có
abcd=120 mà abc=-30 nên -30.d=120 suy ra d=-4
abc=-30 mà ab=-6 nên -6.c=-30 suy ra c=5
bc=-15 mà c=5 suy ra b=-3
ab=-6 mà b=-3 suy ra a.(-3) = -6 suy ra a=2
b) a+b=-1, a+c=6, b+c=1 nên 2a + 2b+2c= -1 + 6 + 1 = 6
suy ra a+b+c = 3 mà a+b= -1 suy ra c=4
suy ra a=6-4=2; b=1-4 = -3
c) a+b+c=-6, b+c+d = -9, c+d+a = -8, d+a+b = -7 nên 3a+3b+3c+3d = -30
suy ra a+b+c+d= -10
mà a+b+c = -6
suy ra d=-4
nên b+c=5, a+c=-4, a+b = -3 suy ra 2a+2b+2c = -2 suy ra a+b+c=-1
suy ra a=-6, b= 3, c= 2
a, d=-4 c=5 b=-3 a=2
b, c=4 a=2 b=-3
c, d=-4 a=-1 c=-3 b=-2
Ta có: \(a+b+c+b+c+d+c+d+a+d+a+b\)
\(=-6+\left(-9\right)+\left(-8\right)+\left(-7\right)\)
\(=>-30:3=-10=a+b+c+d\)
Rồi từ đó luận ra nhé bạn ~
a, Theo đề ra ta có :
(a x b) x (b x c) = (-35) x 7
= -245(1)
Mà a x b x c= 35(2)
Lấy(1) :(2) => b = -7
=> c = -1
=> a = 5
Phần b, tương tự nhé!
5/a,
ta cần c/m: a/b=a +c/b+d
<=> a(b+d) = b(a+c)
ab+ad = ba+bc
ab-ba+ad=bc
ad=bc
a/b=c/d
vậy đẳng thức được chứng minh
b, Tương tự
Theo bài ra ta có : \(a+b=11\Rightarrow a=11-b\)(1) ; \(b+c=3\Rightarrow c=3-b\)(2)
\(\Leftrightarrow c+a=2\)hay \(11-b+3-b=0\Leftrightarrow14-2b=0\Leftrightarrow b=7\)
Thay lại vào (1) ; (2) ta có :
\(\Leftrightarrow a=11-b=11-7=4\)
\(\Leftrightarrow c=3-b=3-7=-4\)
Do a ; b ; c \(\in Z\)Vậy a ; b ; c = 4 ; 7 ; -4 ( thỏa mãn điều kiện )
Bài 1 : Bài giải
Ta có :
\(A=7+7^2+7^3+...+7^8\)
\(A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)\)
\(A=7\left(1+7+7^2+7^3\right)+7^4\left(1+7+7^2+7^3\right)\)
\(A=7\cdot400+7^4\cdot400\)
\(A=7\cdot8\cdot50+7^4\cdot8\cdot50\)
\(A=50\left(7\cdot8+7^4\cdot8\right)\text{ }⋮\text{ }50\)
Bài 1 : Bài giải
Ta có :
\(A=7+7^2+7^3+...+7^8\)
\(A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)\)
\(A=7\left(1+7+7^2+7^3\right)+7^4\left(1+7+7^2+7^3\right)\)
\(A=7\cdot400+7^4\cdot400\)
\(A=7\cdot8\cdot50+7^4\cdot8\cdot50\)
\(A=50\left(7\cdot8+7^4\cdot8\right)\text{ }⋮\text{ }50\)
ta có (a+b+c)+(b+c+d)+(c+d+a)+(a+d+b)=3(a+b+c+d)=-5+(-8)+7+-15
=>a+b+c+d=-7
=> a=-7+8=1
=> b=-7-7=-14
=>c=-7+15=8
=>d=-7+5=-2
vậy...