Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : xy - x - y = 2
=> xy - x = 2 + y
=> x(y - 1) = y + 2
=> x = \(\frac{y+2}{y-1}\)
Mà x là số nguyên nên : \(\frac{y+2}{y-1}\)cũng là số nguyên
Suy ra : y + 2 chia hết cho y - 1
=> y - 1 + 3 chia hết cho y - 1
=> 3 chia hết cho y - 1
=> y - 1 thuộc Ư(3) = {-3;-1;1;3}
Ta có bảng :
y - 1 | -3 | -1 | 1 | 3 |
y | -2 | 0 | 2 | 4 |
x = \(\frac{y+2}{y-1}\) | 0 | -2 | 4 | 2 |
Để phân số A=\(\frac{4n+1}{n-1}\)thỏa mãn điều kiện thì:
4n+1 chia hết cho n-1
4n+1=4n-4+5
=4.(n-1)+5
Vì 4.(n-1) chia hết cho (n-1) nên 5 phải chia hết cho (n-1)
=> (n-1) thuộc Ư(5)=-1,1,-5,5
Nếu n-1=-1 =>n=0
n-1=1 =>n=2
n-1=-5 =>n=-4
n-1=5 =>n=6
Vì n là số nguyên nên ta có n=0, n=2, n=6
Vậy n=0, n=2, n=6
b) Để \(\frac{n+4}{n+1}\in Z\)
\(\Rightarrow n+4⋮n+1\)
\(\Rightarrow n+1+3⋮n+1\)
Mà \(n+1⋮n+1\)
\(\Rightarrow3⋮n+1\)
Lại có : \(n\in Z\Rightarrow n+1\in Z\)
\(\Rightarrow n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{0;-2;2;-4\right\}^{\left(1\right)}\)
Để \(\frac{2}{n-1}\in Z\)
\(\Rightarrow2⋮n-1\)
Lại có: \(n\in Z\Rightarrow n-1\in Z\)
\(\Rightarrow n-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\Rightarrow n\in\left\{2;0;3;-1\right\}^{\left(2\right)}\)
Từ (1) và (2) suy ra:
Để \(\frac{n+4}{n+1}\)và \(\frac{2}{n-1}\)đồng thời có giá trị nguyên thì n = 0 ; 2 ( thỏa mãn n là số nguyên )
a) Để \(\frac{n+2}{9}\in Z\)
\(\Rightarrow n+2⋮9\)
\(\Rightarrow n+2⋮3^{\left(1\right)}\)
Để \(\frac{n+3}{6}\in Z\)
\(\Rightarrow n+3⋮6\)
\(\Rightarrow n+3⋮3\)
\(\Rightarrow n⋮3^{\left(2\right)}\)
Từ (1) và (2) suy ra :
Ko tồn tại giá trị nào của n thỏa mãn đề bài
\(a)\) Ta có :
\(A=\frac{2n-2}{2n+4}=\frac{2n+4-6}{2n+4}=\frac{2n+4}{2n+4}-\frac{6}{2n+4}=1-\frac{6}{2n+4}\)
Để A là số nguyên thì \(\frac{6}{2n+4}\) phải là số nguyên hay nói cách khác \(6⋮\left(2n+4\right)\)
\(\Rightarrow\)\(\left(2n+4\right)\inƯ\left(6\right)\)
Mà \(Ư\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
Suy ra :
\(2n+4\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(3\) | \(-3\) | \(6\) | \(-6\) |
\(n\) | \(\frac{-3}{2}\) | \(\frac{-5}{2}\) | \(-1\) | \(-3\) | \(\frac{-1}{2}\) | \(\frac{-7}{2}\) | \(1\) | \(-5\) |
Mà \(n\inℤ\) nên \(n\in\left\{-5;-3;-1;1\right\}\)
Vậy \(n\in\left\{-5;-3;-1;1\right\}\)
Chúc bạn học tốt ~
b)Gọi d = ƯCLN(a, a+b) (d thuộc N*)
=> a chia hết cho d; a + b chia hết cho d
=> a chia hết cho d; b chia hết cho d
Mà phân số a/b tối giản => d = 1
=> ƯCLN(a, a+b) = 1
=> phân số a/a+b tối giản
\(A=\frac{-4}{2x-1}\)để p/s trên là nguyên =>\(\Rightarrow2x-1\inƯ\left(-4\right)=\left\{-1;-2;-4\right\}\)
=>Ta có bảng
2x-1 | -1 | -2 | -4 |
x | 0 | -0,5 | -1,5 |
Vì x là số nguyên
\(\Rightarrow x=0\)
Để \(A=\frac{-4}{2x-1}\) là số nguyên
\(\Leftrightarrow2x-1=Ư\left(-4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
\(\Leftrightarrow2x=\left\{-3;-1;0;2;3;5\right\}\)
\(\Leftrightarrow x=\left\{0;1\right\}\)
Để phân số trên là số nguyên thì a+1 phải chia hết cho 2
Xét a là số chẵn thì a+1 là số lẻ => ko chia hết cho 2
Xét a là số lẻ thì a+1 là số chẵn=> chia hết cho 2
Vay \(a\in\left\{1;3;5;7;9;......\right\}\)
Thế còn trường hợp
a là số âm thì sao?