Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có n^2+6n=n.(n+6)
Với n E N thì n+6>1
Do đó n^2+6n là số nguyên tố <=>n=1
Thử lại với n=1 thì n^2+6n=7 là số nguyên tố( thỏa mãn)
Vậy n=1
Vì 23n-2 là số nguyên tố => 23n-2 >1 mà 23n-2 là số chẵn => số nguyên tố chẵn duy nhất là 2
=>2 3n -2 là số nguyên tố => 3n -2 =1 => n =1
=> p2 lẻ <=> p lẻ
Vì 44 chia 3 dư 2
Mà nếu p là số nguyên tố (lẻ) thì p2 +44 chia hết cho 3
=> p chia hết cho 3 => p = 3
p=3 thì thỏa mãn
Giả sử p khác 3.Suy ra p không chia hết cho 3 do p là số nguyên tố.
Suy ra p chia 3 dư 1 hoặc 2.
1) p chia 3 dư 1=> p=3k+1=>p^2+44=(3k+1)^2+44=9k^2+6k+45=3(... chia hết cho 3,do đó ko là số nguyên tố
2)p chia 3 dư 2, cũng y vậy p^2+44 chia hết cho 3,do đó cũng ko là số nguyên tố
Vậy chỉ có p=3
+) Với p = 2 thì p2 + 2 = 22 + 2 = 4 + 2 = 6 (loại vì là hợp số)
+) Với p = 3 thì \(\hept{\begin{cases}2p-1=2.3-1=6-1=5\\p^2+2=3^2+2=9+2=11\end{cases}}\left(tm\right)\)
+) Với p > 3, p có dạng 3k + 1 hoặc 3k + 2
TH1: p = 3k + 1
\(\Rightarrow p^2+2=\left(3k+1\right)^2+2=9k^2+6k+1+2=9k^2+6k+3⋮3\)(loại)
TH2: p = 3k + 2
\(\Rightarrow2p-1=2\left(3k+2\right)-1=6k+4-1=6k+3⋮3\) (loại)
Vậy p = 3
Ta co :\(\frac{6n-3}{3n+1}=\frac{2\left(3n+1\right)-5}{3n+1}=2-\frac{5}{3n+1}\)
De 6n-3/3n+1 la so nguyen \(\Leftrightarrow\)5 chia het cho 3n+1
\(\Leftrightarrow\) 3n+1 \(\in\) U(5)
xong lap bang ra lam tiep nhe
ta có
6N-3 /3N+1=2-5/3N+1
=>ĐỂ 2-5/3N+1 LÀ SỐ NGUYÊN
=>5/3N+1 LÀ SỐ NGUYÊN
=>3N+1 THUỘC Ư 5=1,5
=>3N+1=1=>.....
n=1
n=1 tick nhé các bạn thân yêu ơi !!!^^