Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-1}{2011}+\frac{x-2}{2012}=\frac{x-3}{2013}+\frac{x-4}{2014}\)
\(\frac{x-1}{2011}+1+\frac{x-2}{2012}+1=\frac{x-3}{2013}+1+\frac{x-4}{2014}+1\)
\(\Rightarrow\frac{x+2010}{2011}+\frac{x+2010}{2012}=\frac{x+2010}{2013}+\frac{x+2010}{2014}\)
\(\Rightarrow\left(x+2010\right)\left(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\)
\(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}>0\)
\(\Leftrightarrow x+2010=0\Rightarrow x=-2010\)
Bạn tiếp tục áp dụng phương pháp này vào bài 2 nha nhưng bài b bạn sẽ trừ 1 ở mỗi thức
\(a)\) \(\frac{x-1}{2011}+\frac{x-2}{2012}=\frac{x-3}{2013}+\frac{x-4}{2014}\)
\(\Leftrightarrow\)\(\left(\frac{x-1}{2011}+1\right)+\left(\frac{x-2}{2012}+1\right)=\left(\frac{x-3}{2013}+1\right)+\left(\frac{x-4}{2014}+1\right)\)
\(\Leftrightarrow\)\(\frac{x-1+2011}{2011}+\frac{x-2+2012}{2012}=\frac{x-3+2013}{2013}+\frac{x-4+2014}{2014}\)
\(\Leftrightarrow\)\(\frac{x-2010}{2011}+\frac{x+2010}{2012}=\frac{x+2010}{2013}+\frac{x+2010}{2014}\)
\(\Leftrightarrow\)\(\frac{x-2010}{2011}+\frac{x+2010}{2012}-\frac{x+2010}{2013}-\frac{x+2010}{2014}=0\)
\(\Leftrightarrow\)\(\left(x-2010\right)\left(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\)
Vì \(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\ne0\)
Nên \(x-2010=0\)
\(\Rightarrow\)\(x=2010\)
Vậy \(x=2010\)
Chúc bạn học tốt ~
\(\Leftrightarrow\frac{x+1}{2009}+\frac{x+1}{2010}+\frac{x+1}{2011}-\frac{x+1}{2012}-\frac{x+1}{2013}-\frac{x+1}{2014}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{2009}+\frac{1}{2010}+\frac{1}{2011}-\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\\frac{1}{2009}+\frac{1}{2010}+\frac{1}{2011}-\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}=0\end{cases}}\)
mà \(\frac{1}{2009}+\frac{1}{2010}+\frac{1}{2011}-\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\ne0\)
nên \(x+1=0\)
\(\Leftrightarrow x=-1\)
\(\frac{x+1}{2013}+\frac{x+2}{2012}=\frac{x+3}{2011}+\frac{x+4}{2010}\)
\(\Rightarrow\left(\frac{x+1}{2013}+1\right)+\left(\frac{x+2}{2012}+1\right)=\left(\frac{x+3}{2011}+1\right)+\left(\frac{x+4}{2010}+1\right)\)
\(\Rightarrow\frac{x+2014}{2013}+\frac{x+2014}{2012}-\frac{x+2014}{2011}-\frac{x+2014}{2010}=0\)
\(\Rightarrow\left(x+2014\right).\left(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010}\right)=0\)
Vì \(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010}\ne0\)nên để \(\left(x+2014\right).\left(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010}\right)=0\)
Thì x+2014=0
=>x=-2014
\(\frac{x+1}{2013}+\frac{x+2}{2012}=\frac{x+3}{2011}+\frac{x+4}{2010}\)
=> \(\frac{x+1+2013}{2013}+\frac{x+2+2012}{2012}=\frac{x+3+2011}{2011}+\frac{x+4+2010}{2010}\)
=> \(\frac{x+2014}{2013}+\frac{x+2014}{2012}=\frac{x+2014}{2011}+\frac{x+2014}{2010}\)
=> \(\left(x+2014\right)\left(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010}\right)=0\)
=> \(x+2014=0\)(do \(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010}\ne0\))
=> \(x=-2014\)
Ta có :
\(\frac{x-1}{2012}+\frac{x-2}{2011}+\frac{x-3}{2010}+\frac{x-4}{2009}+\frac{x-2021}{2}=0\)
\(\Leftrightarrow\)\(\left(\frac{x-1}{2012}-1\right)+\left(\frac{x-2}{2011}-1\right)+\left(\frac{x-3}{2010}-1\right)+\left(\frac{x-4}{2009}-1\right)+\left(\frac{x-2021}{2}+4\right)=0\)
\(\Leftrightarrow\)\(\frac{x-2013}{2012}+\frac{x-2013}{2011}+\frac{x-2013}{2010}+\frac{x-2013}{2009}+\frac{x-2013}{2}=0\)
\(\Leftrightarrow\)\(\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+\frac{1}{2009}+\frac{1}{2}\right)=0\)
Vì \(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+\frac{1}{2009}+\frac{1}{2}\ne0\)
Nên \(x-2013=0\)
\(\Rightarrow\)\(x=2013\)
Vậy \(x=2013\)
Chúc bạn học tốt ~
\(\frac{x+1}{2013}+\frac{x}{2012}+\frac{x-1}{2011}=\frac{x-2}{2010}+\frac{x-3}{2009}+\frac{x-4}{2008}\)
\(\Leftrightarrow\frac{x+1}{2013}-1+\frac{x}{2012}-1+\frac{x-1}{2011}-1=\frac{x-2}{2010}-1+\frac{x-3}{2009}-1+\frac{x-4}{2008}-1\)
\(\Leftrightarrow\frac{x-2012}{2013}+\frac{x-2012}{2012}+\frac{x-2012}{2011}=\frac{x-2012}{2010}+\frac{x-2012}{2009}+\frac{x-2012}{2008}\)
\(\Leftrightarrow\frac{x-2012}{2013}+\frac{x-2012}{2012}+\frac{x-2012}{2011}-\frac{x-2012}{2010}-\frac{x-2012}{2009}-\frac{x-2012}{2008}=0\)
\(\Leftrightarrow\left(x-2012\right)\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)
\(\Leftrightarrow x-2012=0\). Do \(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\ne0\)
\(\Leftrightarrow x=2012\)
\(\frac{x+4}{2011}+\frac{x+3}{2012}=\frac{x+2}{2013}+\frac{x+1}{2014}\)
\(\Leftrightarrow\left(\frac{x+4}{2011}+1\right)+\left(\frac{x+3}{2012}+1\right)-\left(\frac{x+2}{2013}+1\right)-\left(\frac{x+1}{2014}+1\right)=0\)
\(\Leftrightarrow\frac{x+2015}{2011}+\frac{x+2015}{2012}-\frac{x+2015}{2013}-\frac{x+2015}{2014}=0\)
\(\Leftrightarrow\left(x+2015\right)\left(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\)
\(\Leftrightarrow x+2015=0\) (Vì: \(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\ne0\) )
\(\Leftrightarrow x=-2015\)
Ta có \(\dfrac{x+4}{2010}+\dfrac{x+3}{2011}=\dfrac{x+2}{2012}+\dfrac{x+1}{2013}\)
\(\Rightarrow\)\(1+\dfrac{x+4}{2010}+1+\dfrac{x+3}{2011}=1+\dfrac{x+2}{2012}+1+\dfrac{x+1}{2013}\)
\(\Rightarrow\)\(\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}=\dfrac{x+2014}{2012}+\dfrac{x+2014}{2013}\)
\(\Rightarrow\)\(\left(x+2014\right)\left(\dfrac{1}{2010}+\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}\right)=0\)
\(\Rightarrow\)x+2014=0
\(\Rightarrow x=0-2014=-2014\)
Vậy x=-2014
\(\dfrac{x+4}{2010}+\dfrac{x+3}{2011}=\dfrac{x+2}{2012}+\dfrac{x+1}{2013}\)
\(\Leftrightarrow\dfrac{x+4}{2010}+1+\dfrac{x+3}{2011}+1=\dfrac{x+2}{2012}+1+\dfrac{x+1}{2013}+1\)
\(\Leftrightarrow\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}=\dfrac{x+2014}{2012}+\dfrac{x+2014}{2013}\)
\(\Leftrightarrow\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}-\dfrac{x+2014}{2012}-\dfrac{x+2014}{2013}=0\)
\(\Leftrightarrow\left(x+2014\right)\left(\dfrac{1}{2010}+\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}\right)=0\)
\(\Leftrightarrow x+2014=0\).Do \(\dfrac{1}{2010}+\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}\ne0\)
\(\Leftrightarrow x=-2014\)
a) \(\frac{x+4}{2009}+1+\frac{x+3}{2010}+1=\frac{x+2}{2011}+1+\frac{x+1}{2012}\)
\(\frac{x+4+2009}{2009}+\frac{x+3+2010}{2010}=\frac{x+2+2011}{2011}+\frac{x+2+2012}{2012}\)
\(\frac{x+2013}{2009}+\frac{x+2013}{2010}-\frac{x+2013}{2011}-\frac{x+2013}{2012}=0\)
\(\left(x+2013\right).\left(\frac{1}{2009}+\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)=0\) (1)
Vì \(\left(\frac{1}{2009}+\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)\ne0\)
Nên biểu thức (1) xảy ra khi \(x+2013=0\)
\(x=-2013\)
b) \(\left(x-2011\right)\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\) (2)
Vì \(\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)\ne0\)
Nên biểu thức (2) xảy ra khi \(x-2011=0\)
\(x=2011\)