Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Hàm \(y=5x+1\) là hàm bậc nhất
Câu 2:
Hàm \(y=x\left(x+1\right)-\left(x-1\right)^2\) là hàm bậc nhất
Do \(y=x\left(x+1\right)-\left(x-1\right)^2=x^2+x-x^2+2x-1=3x-1\)
a,x4-10x2+9=0
=>(x-1)(x3+x2-9x-9)=0
=> (x-1)(x+1)(x-3)(x+3)=0
=>\(\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\)hoặc\(\orbr{\begin{cases}x-3=0\\x+3=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=\pm1\\x=\pm3\end{cases}}\)
Vậy tập nghiệm cuả pt là S={\(\pm1,\pm3\)}
Câu 3:
\(\left\{{}\begin{matrix}mx+4y=9\\mx+m^2y=8m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}mx+4y=9\\\left(m^2-4\right)y=8m-9\end{matrix}\right.\)
Để hpt đã cho có nghiệm \(\Leftrightarrow m\ne\pm2\)
Khi đó ta có: \(\left\{{}\begin{matrix}y=\frac{8m-9}{m^2-4}\\x=8-my=8-\frac{8m^2-9m}{m^2-4}=\frac{9m-32}{m^2-4}\end{matrix}\right.\)
\(2x+y+\frac{38}{m^2-4}=3\)
\(\Leftrightarrow\frac{18m-64}{m^2-4}+\frac{8m-9}{m^2-4}+\frac{38}{m^2-4}=3\)
\(\Leftrightarrow26m-35=3m^2-12\)
\(\Leftrightarrow3m^2-26m+23=0\Rightarrow\left[{}\begin{matrix}m=1\\m=\frac{23}{3}\end{matrix}\right.\)
Câu 4:
\(\left\{{}\begin{matrix}m^2x-my=2m^2\\4x-my=m+6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-4\right)x=2m^2-m-6\\4x-my=m+6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(m+2\right)x=\left(m-2\right)\left(2m+3\right)\\4x-my=m+6\end{matrix}\right.\)
- Với \(m=-2\) hệ vô nghiệm
- Với \(m=2\) hệ có vô số nghiệm thỏa mãn \(2x-y=4\)
- Với \(m\ne\pm2\) hệ có nghiệm duy nhất:
\(\left\{{}\begin{matrix}x=\frac{2m+3}{m+2}\\y=mx-2m=\frac{2m^2+3m-2m^2-4m}{m+2}=\frac{-m}{m+2}\end{matrix}\right.\)
Câu 1: ĐKXĐ \(\left\{{}\begin{matrix}x\ne1\\y\ne-1\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}\frac{1}{x-1}=u\\\frac{1}{y+1}=v\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2u+v=7\\5u-2v=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4u+2v=14\\5u-2v=4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}u=2\\v=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x-1}=2\\\frac{1}{y+1}=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x-1=\frac{1}{2}\\y+1=\frac{1}{3}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{3}{2}\\y=-\frac{2}{3}\end{matrix}\right.\)
Câu 2:
Để hệ có nghiệm (x;y)=\(\left(2;-1\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}2m.2-\left(m+1\right).\left(-1\right)=m-n\\\left(m+2\right).2+3n\left(-1\right)=2m-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4m+n=-1\\3n=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}n=\frac{7}{3}\\m=\frac{5}{6}\end{matrix}\right.\)
Câu 1:
a/ Biểu thức không tồn tại GTNN.
Bạn cứ thử với vài giá trị âm có trị tuyệt đối lớn, ví dụ \(a=-10^3\) và \(b=-\frac{1}{10^3}\) sẽ thấy
b/
\(x^3+3x^2+3x+1+y^3+3y^2+3y+1+x+y+2=0\)
\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+x+y+2=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2+\left(y+1\right)^2-\left(x+1\right)\left(y+1\right)\right]+x+y+2=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1-\frac{y+1}{2}\right)^2+\frac{3\left(y+1\right)^2}{4}+1\right]=0\)
\(\Rightarrow x+y=-2\Rightarrow\left\{{}\begin{matrix}x< 0\\y< 0\end{matrix}\right.\)
\(\Rightarrow-x+\left(-y\right)=2\)
\(M=\frac{1}{x}+\frac{1}{y}=-\left(\frac{1}{-x}+\frac{1}{-y}\right)\le-\frac{4}{-x+\left(-y\right)}=-\frac{4}{2}=-2\)
\(\Rightarrow M_{max}=-2\) khi \(x=y=-1\)
1c/
\(T=\sum\frac{a}{2a+a+b+c}=\frac{1}{25}\sum\frac{a\left(2+3\right)^2}{2a+a+b+c}\le\frac{1}{25}\sum\left(\frac{4a}{2a}+\frac{9a}{a+b+c}\right)\)
\(\Rightarrow T\le\frac{1}{25}\left(6+\frac{9\left(a+b+c\right)}{a+b+c}\right)=\frac{15}{25}=\frac{3}{5}\)
Dấu "=" xảy ra khi \(a=b=c\)
a)\(-\frac{2}{\sqrt{1-3x}}\text{có nghĩa }\Leftrightarrow1-3x>0\)
\(\Leftrightarrow-3x>-1\Leftrightarrow x< 1\)
b)\(\sqrt{\frac{-5}{x^2+6}}\text{có nghĩa }\Leftrightarrow\frac{-5}{x^2+6}\ge0;x^2+6\ne0\)
\(\Leftrightarrow x^2+6< 0\Leftrightarrow x^2< -6\left(\text{vô lí }\right)\)
\(x\in\varnothing\)
\(\sqrt{x+5}+\frac{1}{x+5}\text{có nghĩa }\Leftrightarrow x+5>0\)
\(\Leftrightarrow x>-5\)
\(\sqrt{\left(x-1\right)\left(x-2\right)}\text{có nghĩa }\Leftrightarrow\left(x-1\right)\left(x-2\right)\ge0\)
TH1: \(\left(x-1\right)\ge0\text{ và }\left(x-2\right)\ge0\)
\(\Rightarrow x\ge2\)
TH2: \(\left(x-1\right)\le0\text{ và }\left(x-2\right)\le0\)
\(\Rightarrow x\le1\)
Lam thu :3
\(Tk+1=Ck_6.\left(2x\right)^{6-k}.\left(-\frac{1}{x^2}\right)\)
\(=Ck_6.2^{6-k}.x^{6-k}.\frac{\left(-1\right)^k}{x^{2k}}\)
\(-Ck_6.2^{6-k}.x^{6-k-2k}.\left(-1\right)^k\)
SH o chua x \(\Leftrightarrow x^{6-3k}=x^0\)
\(\Leftrightarrow6-3k=0\)
\(\Leftrightarrow k=2\)
\(\Rightarrow SH\)can tim la: \(C^{2_6}.2^4.x^0.\left(-1\right)^2\)