Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+3+3^2+3^3+3^4+3^5+.....+3^{2017}\)
\(=1+3+\left(3^2+3^3+3^4+3^5\right)+.....+\left(3^{2014}+3^{2015}+3^{2016}+3^{2017}\right)\)
\(=4+3^2\left(1+3+3^2+3^3\right)+.....+3^{2014}\left(1+3+3^2+3^3\right)\)
\(=4+3^2\cdot40+....+3^{2014}\cdot40\)
\(=4+40\left(3^2+.....+3^{2014}\right)\) chia 40 dư 4.
\(\frac{3-x}{2016}-1=\frac{2-x}{2017}+\frac{1-x}{2018}\)
\(\Rightarrow\frac{3-x}{2016}-1+2=\frac{2-x}{2017}+\frac{1-x}{2018}+2\)(thêm 2 vô mỗi vế)
\(\Rightarrow\frac{3-x}{2016}+1=\left(\frac{2-x}{2017}+1\right)+\left(\frac{1-x}{2018}+1\right)\)
\(\Rightarrow\frac{2019-x}{2016}=\frac{2019-x}{2017}+\frac{2019-x}{2018}\)
\(\Rightarrow\left(2019-x\right)\cdot\frac{1}{2016}=\left(2019-x\right)\left(\frac{1}{2017}+\frac{1}{2018}\right)\)
\(\Rightarrow2019-x=0\)
\(\Rightarrow x=2019\)
a) f(2) = 1 + 2 + 22 + ...+ 22015
2 x f(2) - f(2) = 2(1 + 2 + 22 + ...+ 22015) - (1 + 2 + 22 + ...+ 22015)
f(2) = 2 + 22 + 23 + ...+ 22016 - 1 - 2 - 22 -...- 22015
f(2) = 22016 - 1 = (24)504 - 1 = 16504 - 1 = ...6 - 1 = ....5
=> f(2) chia cho 3 thì dư 2
b) f(2) = 1 + 2 + 22 + ...+ 22015 = (1 + 2 + 22) + (1 + 2 + 22 ).23 +...+ (1 + 2 + 22).22013
<=> (1 + 2 + 22).(1 + 23 +....+ 22013) = 7.(1 + 23 +....+ 22013) chia hết cho 7
=> f(2) chia hết cho 7
Ta có:
f ( 1 ) = \(a_0+a_1+....+a_{2017}\)
mà f ( x) = \(\left(x+2\right)^{2017}\)
=> \(S=f\left(1\right)=3^{2017}\)