Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không biết bạn đã học khai triển Newton chưa nhỉ?
Áp dụng khai triển Newton ta có:
\((12+\sqrt{7})^{22}+(12-\sqrt{7})^{22}=\sum_{k=0}^{22}C_{22}^{k}(\sqrt{7})^k.12^{22-k}+\sum _{k=0}^{22}C_{22}^{k}(-\sqrt{7})^k12^{22-k}\)Rõ ràng là với $k$ chạy trên tập số lẻ thì các số hạng có số mũ lẻ tự triệt tiêu cho nhau. Với $k$ chạy trên tập số chẵn và $k<22$ thì mỗi số \((\pm \sqrt{7})^k12^{22-k}\) đều là số nguyên chia hết cho $6$. Do đó, nếu gọi tổng trên là $P$ thì \(P\equiv (\sqrt{7})^{22}+(-\sqrt{7})^{22}=2.7^{11}\equiv 2\pmod 6\)
Vậy \((12+\sqrt{7})^{22}+(12-\sqrt{7})^{22}\equiv 2\pmod 6\).
Bài toán này có thể tổng quát cho trường hợp mũ $n$ với $n$ chẵn
Oops xin lỗi hôm nay mới check lại hóa ra mình bị nhầm $2016$
gọi g(x) là thương phép chia
số dư có dạng ax+b
đặt x^99 + x^55 + x^11 + 7 = f(x)
ta có
f(x) = g(x) . (x^2 - 1) +ax+b
x = 1
=> f(1) = g(1) . (1^2 - 1) + a+b
11 = a+b
x=-1
=> f(-1) = g(-1) . (-1^2 - 1) -a+b
=> 3 = -a+b
ta có
a+b = 11
b-a = 3
=> 2a = 8
=> a=4
b=7
thương phép chia là 4a+7
Ta có:
\(22\equiv1\left(mod7\right)\Leftrightarrow22^{22}\equiv1\left(mod7\right)\)(1)
Mặt khác \(55\equiv6\left(mod7\right)\Leftrightarrow55^{55}\equiv6^{55}\left(mod7\right)\)
Mà \(6^2\equiv1\left(mod7\right)\)(2)
tách: \(6^{55}=6^{2.27+1}=\left(6^2\right)^{27}.6\equiv1^{27}.6=6\)(từ (2) ) (3)
Từ (1) và (3) suy ra \(22^{22}+55^{55}\) chia 7 dư 0
2) Ta có:
\(3^6\Leftrightarrow1\left(mod7\right)\)
tách: \(3^{1993}=3^{6.332+1}=\left(3^6\right)^{332}.3\equiv1^{332}.3=3\)(mod 7)
Vậy \(3^{1993}\) chia 7 dư 3