Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi $R(x)$ là đa thức dư khi chia $P(x)$ cho $(x-1)(x-2)(x-3)(x-4)$. Bậc của $R(x)$ phải nhỏ hơn bậc đa thức chia. Do đó đặt:
\(R(x)=ax^3+bx^2+cx+d\)
\(P(x)=Q(x)(x-1)(x-2)(x-3)(x-4)+ax^3+bx^2+cx+d\)
Trong đó $Q(x)$ là đa thức thương.
Theo định lý Bê-du về phép chia đa thức:
\(\left\{\begin{matrix} P(1)=a+b+c+d=-2019\\ P(2)=8a+4b+2c+d=-2036\\ P(3)=27a+9b+3c+d=-2013\\ P(4)=64a+16b+4c+d=-1902\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} a=8\\ b=-28\\ c=11\\ d=-2010\end{matrix}\right.\)
Vậy \(R(x)=8x^3-28x^2+11x-2010\)
b)
Từ phần a suy ra:
\(\left\{\begin{matrix} R(1)=P(1)=-2019\\ R(2)=P(2)=-2036\\ R(3)=P(3)=-2013\\ R(4)=P(4)=-1902\\ R(5)=8.5^3-28.5^2+11.5-2010=-1655\end{matrix}\right.\)
Theo đlí Bezu: \(r_1=P\left(2,3\right)=-1942,150242\);
\(r_2=-1843,310014\)
\(B=0,0\left(2012\right).r_1+3r_2=-5569,010012\)
Gọi đa thức f(x) = ax3 + bx2 + c
g(x) = ax3 + bx2 - x + c - 5
Ta có f(x) chia hết cho x + 2 nên khi thay x = - 2 thì f(x) = 0
<=> - 8a + 4b + c = 0 (1)
g(x) chia hết cho x2 - 1 hay chia hết cho x + 1 và x - 1
Từ đó ta có
- a + b + c - 4 = 0 và a + b + c - 6 = 0
Từ đây ta có hệ phương trình bật nhất 3 ẩn.
Bạn tự giải phần còn lại nhé
Đặt K = 23 + 24 + 25 + ... + 2100
K = 4 + (23 + 24 + 25) + ......... + (297 + 298 + 299 + 2100)
<=> K = 4 + (8 + 16 + 32) + ... + (1.5845633e+29) +( 3.1691265e+29 ) + (6.338253e+29) + (1.2676506e+30)
<=>K = 4 + 56 + ... + (1.5845633e+29) +( 3.1691265e+29 ) + (6.338253e+29) + (1.2676506e+30)
<=>K = 60 + ... + (1.5845633e+29) +( 3.1691265e+29 ) + (6.338253e+29) + (1.2676506e+30)
<=> K = 60 + ... + 2.3768449e+30
<=> K = 2.3768449e+30 + ... + 60 + r
=> r = 1.1789905e+27
=> r = 1
Đ/s:
Ps: Không chắc đâu nhé! Nhưng dù sao giúp bạn là mình vui rồi!
C= 2535301200456458802993406410744
1116 là kết quả của mk
đúng ko sai