Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(1+2018)+2018^2(1+2018)+...+2018^2016(1+2018)
=2019(1+2018^2+...+2018^2016) chia hết cho 2019
=>A chia 2019 dư 0
Câu 1:
Ta có:
\(2^6\equiv-1\left(mod13\right)\Rightarrow2^{70}\equiv2^4.-1\left(mod13\right)\)
\(3^3\equiv1\left(mod13\right)\Rightarrow3^{70}\equiv3\left(mod13\right)\)
\(\Rightarrow2^{70}+3^{70}\equiv13\left(mod13\right)\equiv0\left(mod13\right)⋮13\left(dpcm\right)\)
A = 3 + 32 + 33 + 34 + 35+ .... + 32018 + 32019
= 3 + (32 + 33 + 34 + 35+ .... + 32018 + 32019)
= 3 + [(32 + 33) + (34 + 35) + ... + (32018 + 32019)]
= 3 + [(32 + 33) + 32.(32 + 33) + ... + 32016.(32 + 33)]
= 3 + (36 + 32.36 + ... + 32016.36)
= 3 + 36.(1 + 32 + .... + 32016)
= 3 + 4.9.(1 + 32 + .... + 32016)
Vì 4.9.(1 + 32 + .... + 32016) \(⋮\)4
=> 4.9.(1 + 32 + .... + 32016) + 3 : 4 dư 3
=> A : 4 dư 3
Vậy số dư khi A chia 4 là 3
theo bài ra ta có:
A=3^1+3^2+3^3+3^4 .... +3^2018+3^2019
3A=3.(3^1+3^2+3^3+3^4 .... +3^2018+3^2019)
3A=3^2+3^3+3^4 .... +3^2018+3^2020
3A-A=(3^2+3^3+3^4 .... +3^2018+3^2020)
-(3^1+3^2+3^3+3^4 .... +3^2018+3^2019)
2A= 3^2020-3^1
=>2A=(...1)-(...3)
=>A=(...8)
...........