Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Q = 51 + (52+ 53 + 54) + (55 + 56 + 57) + ....+ (52015 + 52016 + 52017)
Q = 5 + 52.(1 + 5 + 52) + ....+ 52015 .(1 + 5 + 52)
Q = 5 + 52.31 + ...+ 52015.31
Q = 5 + 31.(52 + ...+ 52015)
=> Q chia cho 31 dư 5
bài làm
Q = 51 + (52+ 53 + 54) + (55 + 56 + 57) + ....+ (52015 + 52016 + 52017)
= 5 + 52.(1 + 5 + 52) + ....+ 52015 .(1 + 5 + 52)
= 5 + 52.31 + ...+ 52015.31
= 5 + 31.(52 + ...+ 52015)
Vậy................
hok tốt
\(A=1+(5+5^2+5^3)+(5^4+5^5+5^6)+(5^7+5^8+5^9)\)
\(\Leftrightarrow A=1+5.\left(1+5+5^2\right)+5^4.\left(1+5+5^2\right)+5^7.\left(1+5+5^2\right)\)
\(\Leftrightarrow A=1+5.31+5^4.31+5^7.31\)
\(\Leftrightarrow A=1+31.\left(5+5^4+5^7\right)\)
Vì \(31.\left(5+5^4+5^7\right)⋮31\)nên A chia cho 31 dư 1.
1 + 5 + 52 + 53 + 54 + 55+ 56+ 57+ 58+ 59 cho 31
=1+( 5 + 52 + 53)+(54 + 55+ 56)+(57+ 58+ 59)
=5.(1+5+52)+54(1+5+52)+57(1+5+52)+1
=1+5. 31+54. 31+57.+31
=31.(5+54+57)+1
Vì 31 chia hết cho 31
Nên 31.(5+54+57) chia hết cho 31
Vì thế 31.(5+54+57) chia cho 31 +1
Vậy tổng này chia 31 dư1
Ta có :
\(S=1+5+5^2+5^3+5^4+5^5+5^6+5^7+5^8+5^9\)
\(\Rightarrow S=1+\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+\left(5^7+5^8+5^9\right)\)
\(\Rightarrow S=1+5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+5^7\left(1+5+5^2\right)\)
\(\Rightarrow S=1+5.31+5^4.31+5^7.31\)
\(\Rightarrow S=1+31\left(5+5^4+5^7\right)\)
Vậy \(S:31\)dư \(1\)
\(S=1+5+5^2+5^3+...+5^9\)
Đặt \(A=5+5^2+5^3+...+5^9\)
\(=\left(5+5^2+5^3\right)+...+\left(5^7+5^8+5^9\right)\)
\(=\left(5.1+5.5+5.5^2\right)+...+\left(5^7.1+5^7.5+5^7.5^2\right)\)
\(=5.\left(1+5+5^2\right)+...+5^7.\left(1+5+5^2\right)\)
\(=5.31+...+5^7.31\)
\(=\left(5+5^7\right).31\)
Thay A vào S, ta có:
\(S=1+\left(5+5^7\right).31\)
Vì \(\left(5+5^7\right).31⋮31\)mà \(S=1+\left(5+5^7\right).31\)
Suy ra S chia cho 31 dư 1.
hok tốt nha !