Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có :
\(7^{8^9}=7^{2^{27}}=7^{4^{13}}.7\)
\(7^4=2401\text{≡}1\left(mod15\right)\)
\(\Rightarrow7^{4^{13}}.7\text{≡}1^{13}.7\left(mod15\right)\)
\(\Leftrightarrow7^{8^9}\text{≡}1.7\text{≡}7\left(mod15\right)\)
Vậy ...
b) Để tớ hỏi cô tớ chút nhé :(
-Dung:để t xem lại cách làm của c câu a) đã,cô t bảo bài đó dài,phải xét tới 9 lần 78 đồng dư với ..(mod15) cơ
Chứng minh
a) \(2\equiv-1\left(mod3\right)\)
\(\Rightarrow2^{1000}\equiv\left(-1\right)^{1000}\equiv1\left(mod3\right)\Rightarrow2^{1000}-1\equiv0\left(mod3\right)\Rightarrowđpcm\)
b) \(19\equiv-1\left(mod20\right)\)
\(\Rightarrow19^{45}\equiv\left(-1\right)^{45}\equiv1\left(mod20\right);19^{30}\equiv\left(-1\right)^{30}\equiv1\left(mod20\right)\)
\(\Rightarrow19^{45}+19^{30}\equiv0\left(mod20\right)\Rightarrowđpcm\)
Lời giải:
$(x+1)(x+3)(x+5)(x+7)=[(x+1)(x+7)][(x+3)(x+5)]$
$=(x^2+8x+7)(x^2+8x+15)$
$=[(x^2+8x+12)-5][(x^2+8x+12)+3]$
$=(x^2+8x+12)^2+3(x^2+8x+12)-5(x^2+8x+12)-15$
$=(x^2+8x+12)^2-2(x^2+8x+12)-15$
$\Rightarrow (x+1)(x+3)(x+5)(x+7)$ chia $x^2+8x+12$ dư $-15$
Ta có :
(x + 3 ) (x+5)(x+7)(x+9) + 2033
= ( x2 + 12x + 27 ) (x2 + 12x + 35 ) + 2033
đặt x2 + 12x + 30 = a
Khi đó : (a - 3 ) ( a + 5 ) + 2033
= a2 + 2a - 15 + 2033
= a2 + 2a + 2018
Vậy số dư là 2018
\(VP=1+\frac{2014}{2}+\frac{2015}{3}+...+\frac{4023}{2011}+\frac{4024}{2012}\)
\(=1-1+\left(\frac{2014}{2}-1\right)+\left(\frac{2015}{3}-1\right)+...+\left(\frac{4023}{2011}-1\right)+\left(\frac{40024}{2012}-1\right)+2012\)
\(=\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}+\frac{2012}{2012}+\frac{2012}{1}\)
\(=2012.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)\)
\(\Rightarrow2012=503.x\Rightarrow x=\frac{2012}{503}=4\)
vì đa thức chia là x^2-1 nên đa thức dư có bậc >2
=> đa thức dư có dạng là ax+b(với a,b thuộc R)
=>x^7+
vì đa thức là x^2-1 có bậc là 2 nên đa thức dư có bậc <2
=>đa thức có dạng : ax+b
=>x^7+x^5+x^3+1=(x^2-1).Qx+ax+b
=>.....................=(x-1)(x+1).Qx+ax+b
+TH1:X=1(1)
+TH2:x=-1(2)
cộng (1) và (2) ta có =>b=
Thay vào (1) =>a=
vậy đa thức dư cần tìm la