K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2017

3^100=3^4.25

        =(3^4)^25

        =81^25

         =...5

ma mot so co chu so tan cung la 5 thi khi chia cho 7 se co so du la 2

17 tháng 1 2017

tìm số dư khi chia 3^100 cho 7

10 tháng 12 2023

.............

29 tháng 6 2016

/hoi-dap/question/57248.html

29 tháng 6 2016

/hoi-dap/question/58007.html

28 tháng 6 2016

a bằng số dư của phép chia N cho 2 .

=> a = 1

=> abcd có dạng 1bcd.

e thuộc số dư của phép chia N cho 6.

=> e thuộc 0,1,2,3,4,5 mà d bằng số dư của phép chia N cho 5 .

=> d,e thuộc 00,11,22,33,44,05.

c thuộc số dư của phép chia N cho 4.

=> c,d,e thuộc 000,311,222,133,044,105.

=> a,b,c,d,e có dạng là 1b000,1b311,1b222,1b333,1b044,1b105.

Vì b bằng số dư của phép chia N cho 3

=> a+c+d+e chia hết cho 3 .

=> Chọn được số 1b311,1b044.

Ta được các số là : 10311,11311,12311,10044,11044,12044.

hihi

\(B=3^2+3^3+3^6+.....+3^{60}\)

\(\Rightarrow3^2B=3^4+3^6+3^8+.....+3^{62}\)

\(\Rightarrow9B-B=\left(3^4+3^6+.....+3^{62}\right)-\left(3^2+3^4+....+3^{60}\right)\)

\(\Rightarrow8B=3^{62}-3^2\)

\(\Rightarrow B=\frac{3^{62}-3^2}{8}\)

14 tháng 8 2017

a, S= 1+2+22(1+2+22)+25(1+2+22) +....+298(1+2+22)

1+2+22=7

S=3+7a+7b+....+7k => Schia 7 dư 3

b,S= 1+2(1+22+23+24+25)+27(1+22+23+24+25)+....+295(1+22+23+24+25)

mà (1+22+23+24+25)=63 chia hết cho 9

=>S=1+9c+9d+...+9t

=> S chia 9 dư 1

14 tháng 8 2017

á ghi lộn 

ko phải 1+22+23+24+ 2 đâu

là 1+2+22+23+24+ 25

làm lại câu b nè

S= 1+2+22+23+24+25(1+2+22+23+24+ 25)+....+294(1+2+22+23+24+ 25)

(1+2+22+23+24+ 25)=63 chia hết cho 9

S=55+9c+9d+...+9g

55 chia 9 dư 1

=>S chia 9 dư1

15 tháng 8 2017

\(S=1+2+2^2+2^3+...+2^{100}\)

\(2S=2+2^2+2^3+2^4+...+2^{101}\)\(2S-S=\left(2+2^2+2^3+2^4+...+2^{101}\right)-\left(1+2+2^2+2^3+...+2^{100}\right)\)

\(S=2^{101}-1\)

Mk chỉ tính ra được S thui,nếu được thì bn làm nốt phần còn lại nhé

Chỉ gợi ý đến đó thui nhưng bn cũng nhớ phải k cho mk đó

15 tháng 8 2017

\(S=1+2+2^2+....+2^{100}\)

\(\Leftrightarrow2A=2+2^2+2^3+...+2^{101}\)

\(\Rightarrow2A-A=2^{101}-1\)

\(\Rightarrow A=2^{201}-1=4^{50}.2-1=\overline{......6}.2-1=\overline{.......2}-1=\overline{......1}\) chia 5 dư 1

30 tháng 6 2016

a bằng số dư của phép chia N cho 2

=>a=1

=>abcd có dạng 1bcd

e thuộc số dư của phép N cho 6

=>e thuộc 0.1.2.3.4.5 mà d bằng số dư của phép chia N cho 5

=> d,e thuộc 00.11.22.33.44.05

c bằng số dư của phép chia N cho 4

=>c,d,e thuộc 000.311.222.133.044.105

=> a,b,c,d,e có dạng là 1b000,1b311,1,222,1b333,1b044,1b105

vì b bằng số dư của phép chia N cho 3

=>a+c+d+e chia hết cho 3

=> chọn được số 1b311.1b044

Ta được các số là : 10311.11311.12311.10044.11044.12044