K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2016

Ta có :
436223(mod11)43624362=43622.2181=3218143622≡3(mod11)⇒43624362=43622.2181=32181
Lai có :351(mod11)32181=35.436+1=35.436.31.3(mod11)=335≡1(mod11)⇒32181=35.436+1=35.436.3≡1.3(mod11)=3
Do đó 436243623(mod11)43624362≡3(mod11) 

15 tháng 8 2016

Ta có :

\(4362^{4362}=\left(6.727\right)^{4362}\)

\(=6^{4362}.727^{4362}\)

\(=\left(6^{10}\right)^{436}.6^2.\left(727^2\right)^{2181}\)

Ta có :

\(6^{10}\text{≡}1\left(mod11\right)\)

\(\Rightarrow\left(6^{10}\right)^{436}\text{≡}1\left(mod11\right)\)

\(727^2\text{≡}1\left(mod11\right)\)

\(\Rightarrow\left(727^2\right)^{2181}\text{≡}1\left(mod11\right)\)

\(\Rightarrow4362^{4362}\text{≡}1.6^2.1\text{≡}3\left(mod11\right)\)

Vậy ...

 

 

5 tháng 3 2017

hình như dư 6

6 tháng 3 2017

6 sai!

4362 đồng dư 6(mod 11)

4362^5 đồng dư 6^5(mod 11) đồng dư 1(mod 11)

(4362^5)^872 đồng dư 1(mod 11)

(4362^5)^872 có dạng 11n+1

4362^2 đồng dư 3(mod 11)

4362^2 có dạng 11m+3

(4362^5)^872x4362^2=4362^4362 sẽ có dạng là (11n+1)x(11m+3)=11m x 11n+11m+33n+3:11 dư 3

19 tháng 12 2018

bài này có trong đề thi cuối học kì 1 ko ???????

21 tháng 12 2018

a) Tìm được dư là 4227

b) Nhận xét: Số mũ của các số hạng có dạng 4k + 1 (k ∈ N)

Chữ số tận cùng của A là chữ số tận cùng của tổng 1 + 2 + 3 + … + 505

Vậy A có tận cùng là 5.

8 tháng 12 2018

a) Ta có:

a=17x+11=23y+18=11z+3 (x,y,z E N)

=> a+74=17x+85=23y+92=11z+77

=> a+74 chia hết cho 17;23;11

Vì 3 số trên ntcn nên: a+74 chia hết cho 17.23.11=4301

Đặt: a+74=4301k (k E N*)

=> a=4301(k-1)+4227

nên: số dư của a khi chia cho 4301 là: 4227

b) 11+25+39+413+..........+505201

Ta dễ thấy rằng: 1;5;9;...vv là các số có dạng: 4k+1 (k E N)

=> 11+25+39+............+505201=(...1)+(...2)+(....3)+(...4)+........+(...4)+(...5)

Tổng tận cùng của 10 stn liên tiếp là:

1+2+3+4+5+6+7+8+9+0=45 có tc=5

Ta có 50 cặp nv nên sẽ có tc=0

5 số cuối là: (...1);(...2);(...3);(..4);(...5)

tc=1+2+3+4+5=15 có tc=5

Vậy tổng trên có tc=0+5=5

A có tc=5

9 tháng 12 2018

thank you nha

26 tháng 11 2019

Dễ thấy mọi số mũ đều có dạng 4k+1

\(A=1^1+2^5+3^9+4^{13}+.....+504^{2013}+505^{2017}\)

\(=\overline{.....1}+\overline{....2}+\overline{.....3}+.....+\overline{......5}\)

Chia tổng A thành 50 nhóm và thừa 5 số hạng cuối

Chữ số tận cùng của 50 là 

50=10*5 có chứa thừa số 10

nên cstc của 50 nhóm là 0

cstc của 5 số hạng cuối là 5

=> A có tận cùng là 5

Nguồn:Shitbo

26 tháng 11 2019

a khi chia cho 17 dư 11 suy ra a có dạng \(17p+11\)

\(\Rightarrow a+74=17p+85⋮17\)

a khi chia cho 23 dư 18 suy ra a có dạng 

\(23q+18\Rightarrow a+74=23q+92⋮23\)

a khi chia cho 11 dư 3 suy ra a có dạng 

\(11r+3\Rightarrow a+74=11r+77⋮11\)

\(\Rightarrow a+74\in BC\left(17;23;11\right)\)

\(\Rightarrow a+74=4301k\)

\(\Rightarrow a+74-4301=4301k-4301\)

\(\Rightarrow a-4227=4301\left(k-1\right)\Rightarrow a=4301\left(k-1\right)+4227\) dư 4327

10 tháng 6 2019

1. Ta có: A = 30 + 31 + 32 + ... + 3100

3A = 3.(1 + 3 + 32 + ... + 3100)

3A = 3 + 32 + 33 + ... + 3101

3A - A = (3 + 32 + 33 + ... + 3101) - (1 + 3 + 32 + ... + 3100)

2A = 3101 - 1

A = \(\frac{3^{101}-1}{2}\)

Vậy ...

10 tháng 6 2019

Baif1 :

đặt \(A=3^0+3^1+3^2+...+3^{100}\)

\(\Rightarrow3A=3+3^2+3^3+...+3^{101}\)

\(\Rightarrow3A-A=\left(3+3^2+...+3^{101}\right)-\left(1+3+...+3^{100}\right)\)

\(\Rightarrow2A=3^{101}-1\)

\(\Rightarrow A=\frac{3^{101}-1}{2}\)