Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Ta có \(\tan\alpha.\cot\alpha=1\Rightarrow\tan\alpha=\frac{1}{\cot\alpha}\)
\(\Rightarrow\frac{1}{\cot\alpha}+\cot\alpha=2\Rightarrow\cot^2\alpha-2\cot\alpha+1=0\)
\(\cot\alpha=1\Rightarrow\alpha=45^0\)
b.Ta có \(\sin^2\alpha+\cos^2\alpha=1\Rightarrow\cos^2\alpha=1-\sin^2\alpha\)
\(\Rightarrow7.\sin^2\alpha+5\left(1-\sin^2\alpha\right)=\frac{13}{2}\)\(\Leftrightarrow\sin^2\alpha=\frac{3}{4}\Leftrightarrow\orbr{\begin{cases}sin\alpha=\frac{\sqrt{3}}{2}\\sin\alpha=\frac{-\sqrt{3}}{2}\end{cases}}\)
\(\Rightarrow\alpha=60^0\)
\(A^2=\left(\sin\alpha+\cos\alpha\right)^2\le2\left(sin^2\alpha+cos^2\alpha\right)=2\)
\(\Leftrightarrow A\le\sqrt{2}\)dấu bằng xảy ra khi \(\sin\alpha=\cos\alpha\)
\(B=\frac{1}{\sin^2\alpha}+\frac{1}{\cos^2\alpha}\ge\frac{4}{sin^2\alpha+cos^2\alpha}=4\)
dấu bằng xảy ra khi \(sin^2\alpha=cos^2\alpha\)
\(\sin^4\alpha+\sin^2\alpha.\cos^2\alpha+\cos^2\alpha=\)\(\sin^2\alpha\left(\sin^2\alpha+\cos^2\alpha\right)+\cos^2\alpha=\sin^2\alpha+\cos^2\alpha=1\)
\(\frac{1}{1+\sin\alpha}+\frac{1}{1-\sin\alpha}-2\tan^2\alpha=\frac{1-\sin\alpha+1+\sin\alpha}{1-\sin^2\alpha}-\frac{2\sin^2\alpha}{\cos^2\alpha}=\)
\(\frac{2}{1-\sin^2\alpha}-\frac{2\sin^2\alpha}{\cos^2\alpha}=2\left(\frac{1}{\cos^2\alpha}-\frac{\sin^2\alpha}{\cos^2\alpha}\right)=2\)
chúng không phụ thuộc vào số đo góc\(\alpha\)
\(B=cos^2a+sin^2a\left(cos^2a+sin^2a\right)=cos^2a+sin^2a=1\)
\(C=\frac{1-sina+1+sina}{\left(1+sina\right)\left(1-sina\right)}-2tan^2a=\frac{2}{1-sin^2a}-2tan^2a\)
\(=\frac{2}{cos^2a}-\frac{2sin^2a}{cos^2a}=\frac{2\left(1-sin^2a\right)}{cos^2a}=\frac{2cos^2a}{cos^2a}=2\)
\(\frac{\cos a-\sin a}{cosa+sina}=\frac{\frac{cosa}{cosa}-\frac{sina}{cosa}}{\frac{cosa}{cosa}+\frac{sina}{cosa}}\)(chia ca tu va mau cho cosa)
\(=\frac{1-tana}{1+tana}=vt\left(dpcm\right)\)
\(\Delta\)ABC vg tại A , ad tỉ số lg giác trong tg vg ta có
a,\(\sin^2\alpha+\cos^2\alpha\)=\(\frac{AB^2}{BC^2}\)+ \(\frac{AC^2}{BC^2}\)= \(\frac{BC^2}{BC^2}\)=1
b,\(\frac{\sin\alpha}{\cos\alpha}\)= \(\frac{AB}{BC}\): \(\frac{AC}{BC}\)= \(\frac{AB}{AC}\)= \(\tan\alpha\)
#mã mã#