Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số có 2 chữ số cần tìm có dạng là ab(Điều kiện: \(a,b\in N\); 0<a<10; \(1\le b< 10\))
Vì tổng các chữ số bằng 9 nên ta có phương trình: a+b=9(1)
Vì 8 lần chữ số này bằng chữ số kia nên ta có phương trình: 8a=b(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a+b=9\\8a=b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+8a=9\\b=9-a\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}9a=9\\b=9-a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=8\end{matrix}\right.\)(thỏa ĐK)
Vậy: Số cần tìm là 18
Gọi chữ số hàng chục là x (x là các số tự nhiên từ 1 tới 9)
Gọi chữ số hàng đơn vị là y (y là các số tự nhiên từ 0 tới 9)
\(\Rightarrow\) Giá trị của số đó là: \(10x+y\)
Do số đó bằng tổng các chữ số cộng với 9 nên:
\(10x+y=x+y+9\Rightarrow9x=9\Rightarrow x=1\)
Số đó bằng 2 lần hiệu 2 chữ số của nó và cộng thêm 20:
Trường hợp 1: \(10x+y=2\left(x-y\right)+20\)
\(\Rightarrow10.1+y=2-2y+20\)
\(\Rightarrow3y=12\Rightarrow y=4\)
Trường hợp 2: \(10x+y=2\left(y-x\right)+20\)
\(\Rightarrow10.1+y=2y-2+20\)
\(\Rightarrow y=-8< 0\) (loại)
Vậy số đó là 14
theo bài ra ta có hệ pt:
a+b=5
a^2+b^2=13
giai he pt ra ta dc b=2hoacb=3
Gọi số cần tìm có dạng là \(\overline{ab}\)
Theo đề, ta có hệ:
a+b=9 và 8a=b
=>a=1; b=8
Gọi số đó là ab, ta có hpt: a2 + b2 = ab + a.b và ab + 36 = ba
=> a = 7; b = 8 => ab = 78
gọi số đó là ab
theo đề bài có hệ phương trình
a^2 + b^2 = ab + a x b
ab + 36 = ba
giải hệ được ab là 48
Gọi số thứ nhất là : x
số thứ 2 là : y
\(\Rightarrow x+y=150\)
\(\frac{x}{9}+\frac{y}{3}=42\)
Sr bấm nhầm
Gọi số thứ nhất là x ; số thứ 2 là y
\(\Rightarrow\hept{\begin{cases}x+y=150\\\frac{x}{9}+\frac{y}{3}=42\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y=150\\\frac{9x}{9}+\frac{9y}{3}=378\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y=150\\x+3y=378\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2y=228\\x+y=150\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}y=114\\x=36\end{cases}}\)
Vậy số thứ nhất là 36
số thứ 2 là 114
ab
trong hệ tp ab=10a+b
theo bài có pt
10a+b=a^2+b^2-11
10a+b=2a.b+5
giải hệ trên
với 0<a<=9, 0<=b<=9
(1-2)=>(a-b)^2=16=>a-b=+-4
=>b=a+-4
thay vào (2)
10a+a+-4=2a^2+-8+5
2a^2-11a+-4+5=0
•2a^2-11a+1=0 loại a không nguyên
•2a^2-11a+9=0
a=(11+-7)/4
a=18/4 loại
a=1 nhận
b=5
đáp số: 15
Gọi số cần tìm là ab . Nếu b>a thì gọi số bé hơn là a, số lớn hơn là b Theo đề bài, ta có:
a+b=9(1)
8a=b(2)
Xét (1):
a+b=9
a+8a=9
<=>9a=9
<=>a=1
<=>b=8
Vậy số cần tìm là 18(đây cho trường hợp a<b, còn nếu trường hợp a>b thì ab = 81)