Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do ¯abab¯,¯adad¯ là các số nguyên tố nên b và d là các số lẻ khác 5 (1)
từ (gt) ¯db+c=b2+ddb¯+c=b2+d (2)
\Leftrightarrow 10d+b+c=b2+d10d+b+c=b2+d
\Leftrightarrow 9d+c=b2−b=b(b−1)9d+c=b2−b=b(b−1)
VT lớn hơn hoặc bằng 9 nên từ VP => b>3 mà b lẻ khác 5 nên b chỉ có thể bằng 7 hoặc 9
+Với b = 7 thì 9d+c=42 => 3<d<5 trái với (1)
+Với b= 9 thì 9d +c= 72 => 7 \leq d \leq 8, mà d lẻ nên d = 7
Thay vào (2) ta đc c = 9
Do ¯a9a9¯, ¯a7a7¯ cùng nguyên tố nên a chỉ có thể nhận các giá trị tương ứng 1,2,5,7,8 hoặc 1,3,4,6,9
=> a = 1 và ¯abcdabcd¯ = 1997, thử lại thấy thỏa mãn
chúcbạn học tốt
Do là các số nguyên tố nên b và d lẻ khác 5 (1)
ta có db+c=b2+d => 9d + c = b(b-1) (2)
Có 9d + c ≥ 9 nên từ (2) suy ra b >3 mà b lẻ b = 7; hoặc b= 9
+ b = 7 => 9d + c = 42 3 < d ≤ 4 trái với (1)
+ b = 9 =>9d + c = 72 6 < d ≤ 8 mà d lẻ d = 7
Thay vào điều kiện (2) được c = 9.
Do là các số nguyên tố nên a chỉ có thể nhận các giá trị tương ứng 1; 2; 5; 7; 8 hoặc 1; 3; 4; 6; 9. Suy ra a = 1 và abcd=1997
Vậy abcd= 1997
Nhớ k nha
M=tan cung 5=> C=5
2)=> d=0
3)ab=10a+b=a+b^2
9a=b(b-1)=>b=9; a=8
ds:8950
Vì c là chữ số tận cùng của m
=>c có chữ số tận cùng là 0 hoặc 5
Mà m có 101 số hạng
=>c có chữ số tận cùng là 5
Ta có:
abcd=1000.a+100.b+10c+d
Mà 1000.a và 100.b đều chia hết cho 25
=>10.c+d phải chia hết cho 25
=>50+d phải chia hết cho 5
Mà d là số có một chữ số =>d=0
Ta có:
ab=a+b2
10a+b=a=b2
9a=b2-b
9a=b.(b-1)
Vì 9a chia hết cho 9
=>b.(b-1) phải chia hết cho 9
=>b=9 (Vì b là số có một chữ số)
=>a=8
Vậy số tự nhiên có 4 chữ số abcd thỏa mãn các điều kiện trên là: 8950.
Chúc bạn làm bài kiểm tra tốt. Mình cũng không chắc cho lắm nhưng mình thấy cũng tạm được, chỉ mỗi tội hơi dài. Chữ "chia hết" bạn nên dùng kí hiệu.
k cho mình với nha!
OK!
Số nguyên tố tận cùng là lẻ.
=> b=7 or b= 9
*b=7 => 42=9c+d
=> loại
=> b=9
=> 9c+d= 72
=> c = 7 vì ac là số nguyên tố.
=> d = 9
=> a = 1