Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{3n+2}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3+\frac{5}{n-1}\)
để A có giá trị nguyên thì 5 phải chia hết cho n-1 hay n-1 là ước của 5
Ư(5)={5,1,-1,-5}
\(\Rightarrow\)n={6,2,0,-4}
gọi số cần tìm là A,Ta có: A+2CHIA HẾT CHO 3,4,5,6 HAY A+2 là bội chung của 3,4,5,6
BCNN(3,4,5,6)=60
\(\Rightarrow A+2=60.n\Rightarrow n=1,2,3,4,.... \)
lần lượt thử các số n.
Ta thấy n=7 thì A=418 chia hết cho 11
vậy số nhỏ nhất là 418
Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: A = 29p + 5 (p ∈ N)
Tương tự: A = 31q + 28 (q ∈ N)
Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p - q) cũng là số lẻ => p - q ≥≥ 1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=> 2q = 29(p - q) - 23 nhỏ nhất
=> p - q nhỏ nhất
Do đó p - q = 1 => 2q = 29 - 23 = 6
=> q = 3
Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 93 + 28 = 121
Cách 2
Gọi số tự nhiên nhỏ nhất cần tìm là a
Do a chia 29 dư 5; chia 31 dư 28
=> a = 29.m + 5 = 31.n + 28 (m;n∈N)(m;n∈N)
=> 29.m = 31.n + 23
=> 29.m = 29.n + 2.n + 23
=> 29.m - 29.n = 2.n + 23
=> 29.(m - n) = 2.n + 23
⇒2.n+23⋮29⇒2.n+23⋮29
Để a nhỏ nhất thì n nhỏ nhất => 2.n + 23 nhỏ nhất
Mà 2.n + 23 là số lẻ => 2.n + 23 = 29
=> 2.n = 29 - 23
=> 2.n = 6
=> n = 6 : 2 = 3
=> a = 31.3 + 28 = 121
Vậy số nhỏ nhất cần tìm là 121
Nếu chia hết cho 29 thì chia cho 31 dư 28 - 5 = 23.
Hiệu của 31 và 29: 31 - 29 = 2
Thương của phép chia cho 31 là:
(29-23) : 2 = 3
(Hoặc. Gọi a là thương lúc này của phép chia cho 31.
2 x a + 23 = 29 => a = 3)
Số cần tìm là:
31 x 3 + 28 = 121
Đáp số: 121
Gọi số đó là a :
Ta có a : 29 dư 5 suy ra ( a - 5 ) : 29
Ta có a : 31 dư 28 suy ra ( a - 28 ) : 31
Khi đó a sẽ là Bội chung của 29 và 31
Phân tích thành số nguyên tố , ta có :
29 = 29 x 1
31 = 31 x 1
Thừa số chung là : 1
Thừa số riêng là : 29 và 31
Suy ra bội chung nhỏ nhất của 29 và 31 là :
1 x 29 x 31 = 899
Từ số 899 ta tìm được các bội khác bằng cách lấy 899 + 899 và tiếp tục như vậy
Ta có : { 899 ; 1798 ; 2697 ; ....... }
Từ đề bài ta có thể suy ra n+5 chia hết cho 11, 17, 19 (vì 6+5 =11, 12+5=17, 14+5=19)
vậy n+5 sẽ là bội chung nhỏ nhất của 11, 17, 19
=>n+5 = 11.17.19 = 3553 => x = 3548
Vì n chia cho 11 dư 6 NHÌN XUỐNG DÒNG CUỐI RỒI HẴNG LÀM BÀI BẠN NHÉ
nên n=11q+6
suy n+5=11q+11 chia hết cho 11(1)
lại có:n chia cho 17 dư 12
nên n=17q+12
suy ra n+5=17q+17 chia hết cho 17(2)
Từ (1) và (2) suy ra n+5 thuộc BC(11;17)
Ta có BCNN(11;17)=11.17=187
Vì n+5 thuộc BC(11;17) nên n+5 thuộc B(187)
suy ra n+5 chia hết cho 187
suy ra n chia cho 187 dư 182
Vậy n chia cho 187 dư 182
Bạn nhớ thay các chữ như suy ra,chia hết cho,thuộc bằng ccác kí hiệu nhé
vào đây nhé đúng 100% : Câu hỏi của Nguyễn Thị Bích - Toán lớp 6 - Học toán với OnlineMath
nhớ t i c k !! 54676457568589769780754745757537547646865475755734636
a, A chia 12 dư 3
=> a = 12 + 3 = 15
=> A =15.
b, a chia 29 dư 11
Ta có : 29 + 11 = 40
=> A = 40.