Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình thử làm bạn xem có đúng không nhé!
Gọi số cần tìm là abc. Ta có:
b:c=2(dư 2) => b= c x 2 + 2
=> c phải lớn hơn 2 và nhỏ hơn 4 => c=3
=> b=3 x 2 +2 = 8
=> a= 8-3 = 5
=> số cần tìm là 583
Do x là số nhỏ nhất có ba chữ số chia 12; 18; 30 đều dư
⇒ x - 8 = BCNN(12; 18; 30)
Ta có:
12 = 2².3
18 = 2.3²
30 = 2.3.5
⇒ x - 8 = BCNN(12; 18; 30) = 2².3².5 = 180
⇒ x = 180 + 8 = 188
Vậy x = 188
BCNN (12; 18; 30) = 2.6.3.5 = 180
x là số nhỏ nhất chia cho 12; 18; 30 đều dư 8
vậy x = 180 180 + 8 = 188
Lời giải:
Gọi số cần tìm là $a$. Theo đề thì:
$a-3\vdots 70,210,350$
$\Rightarrow a-3\vdots BCNN(70,210,350)$
$\Rightarrow a-3\vdots 1050$
$\Rightarrow a=1050k+3$ với $k$ là số tự nhiên
Vì $a$ có 4 chữ số nên $1050k+3>999$
$\Rightarrow k>0$
Để $a$ nhỏ nhất thì $k$ nhỏ nhất. $\Rightarrow k=1$
Khi đó: $a=1050.1+3=1053$
Gọi số tự nhiên cần tìm có dạng abcd ( \(0< a\le9\) , \(0\le b,c,d\le9\) )
Do số cần tìm khi chia cho 70 , 210 , 350 có cùng số dư là 3 nên
=> ( abcd - 3 ) \(⋮\) 70 , 210 , 350
=> ( abcd -3 ) \(⋮\) ƯCLN( 70 ; 210 ; 350)
70 = 2 . 5 . 7
210 = 2 . 3 . 5 . 7
350 = 2 . \(5^2\) . 7
=> ƯCLN ( 70;210;350) = 2 . 3 . \(5^2\) . 7 = 1050
=> abcd -3 chia hết 1050
mà abcd là số nhỏ nhất có 4 chữ số
=> abcd -3 = 1050
=> abcd = 1053
vậy số cần tìm là 1053