Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ \(2a+b+c=\left(a+b\right)+\left(a+c\right)\)
\(\ge2\sqrt{\left(a+b\right)\left(a+c\right)}\) ( theo AM-GM )
\(\Rightarrow\left(2a+b+c\right)^2\ge4\left(a+b\right)\left(a+c\right)\)
\(\Rightarrow\frac{1}{\left(2a+b+c\right)^2}\le\frac{1}{4\left(a+b\right)\left(a+c\right)}\)
Dấu "=" xảy ra \(\Leftrightarrow b=c\)
+ Tương tự : \(\frac{1}{\left(2b+c+a\right)^2}\le\frac{1}{4\left(a+b\right)\left(b+c\right)}\). Dấu "=" xảy ra <=> a = c
\(\frac{1}{\left(2c+a+b\right)^2}\le\frac{1}{4\left(a+c\right)\left(b+c\right)}\). Dấu "=" xảy ra \(\Leftrightarrow a=b\)
Do đó : \(P\le\frac{1}{4}\left(\frac{1}{\left(a+b\right)\left(a+c\right)}+\frac{1}{\left(a+b\right)\left(b+c\right)}+\frac{1}{\left(a+c\right)\left(b+c\right)}\right)\)
\(\Rightarrow P\le\frac{1}{2}\cdot\frac{a+b+c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}\)\(=8abc\)
\(\Rightarrow P\le\frac{a+b+c}{16abc}\)
+ \(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\). Dấu :=" xảy ra \(\Leftrightarrow a=b\)
\(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\). Dấu "=" xảy ra <=> b = c
\(\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{2}{ca}\). Dấu "=" xảy ra <=> c = a
\(\Rightarrow2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
\(\Rightarrow3\ge\frac{a+b+c}{abc}\) \(\Rightarrow a+b+c\le3abc\)
\(\Rightarrow P\le\frac{3abc}{16abc}=\frac{3}{16}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
\(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{2}{x}-\dfrac{2-x}{x\sqrt{x}+x}\right)\)
\(dk:\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)
\(P=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x+1}\right)}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{2\left(\sqrt{x}+1\right)+x-2}{x\left(\sqrt{x}+1\right)}\right)\)
\(P=\left(\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\left(\dfrac{x\left(\sqrt{x}+1\right)}{2\sqrt{x}+x}\right)\)
a)
\(P=\dfrac{x}{\sqrt{x}-1}\)
b) tồn tại \(\sqrt{P}\Rightarrow\dfrac{x}{\sqrt{x}-1}\ge0\) \(\Leftrightarrow x>1\)
\(\left\{{}\begin{matrix}x>1\\P=\dfrac{x}{\sqrt{x}-1}=\left(\sqrt{x}-1\right)+\dfrac{1}{\sqrt{x}-1}+2\ge2+2=4\end{matrix}\right.\)đẳng thức khi x =\(\left(\sqrt{x}-1\right)^2=1\Rightarrow x=4\) thỏa mãn
GTNN \(\sqrt{P}=2\)
\(M=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right)\div\dfrac{\sqrt{x}-1}{2}\)
(ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\))
\(=\left[\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right]\times\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{\left(x+2\right)+\sqrt{x}\left(\sqrt{x}-1\right)-\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\times\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{1}{x+\sqrt{x}+1}\)
\(M=\dfrac{1}{\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le1\)
Dấu "=" xảy ra khi x = 0
Cảm ơn nhé! Nhưng tớ làm ra câu a,b rồi :( cậu biết làm c,d không?
Bài 1:
a: \(A=\left(\dfrac{x-1}{2\sqrt{x}}\right)^2\cdot\dfrac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{x-1}\)
\(=\dfrac{\left(x-1\right)^2}{4x}\cdot\dfrac{-4\sqrt{x}}{x-1}=\dfrac{-\left(x-1\right)}{\sqrt{x}}\)
b: Để B<0 thì -x+1<0
=>-x<-1
hay x>1
c: Để B=2 thì \(-\left(x-1\right)=2\sqrt{x}\)
\(\Leftrightarrow-x+1-2\sqrt{x}=0\)
\(\Leftrightarrow x+\sqrt{x}-1=0\)
\(\Leftrightarrow\sqrt{x}=\dfrac{\sqrt{5}-1}{2}\)
hay \(x=\dfrac{6-2\sqrt{5}}{4}\)
Bài 1 : ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)
Câu a :
\(B=\left(\dfrac{\sqrt{x}}{2}-\dfrac{1}{2\sqrt{x}}\right)^2\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right)\)
\(=\left(\dfrac{\sqrt{x}.\sqrt{x}-1}{2\sqrt{x}}\right)^2\left(\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\left(\dfrac{x-1}{2\sqrt{x}}\right)^2\left(\dfrac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\dfrac{\left(x-1\right)^2}{\left(2\sqrt{x}\right)^2}\times\dfrac{-4\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\left(x-1\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{4x}\times\dfrac{-4\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=-\dfrac{x-1}{\sqrt{x}}\)
Câu b :
Để \(B< 0\Leftrightarrow-\dfrac{x-1}{\sqrt{x}}< 0\Leftrightarrow\dfrac{x-1}{\sqrt{x}}>0\Leftrightarrow x-1>0\Leftrightarrow x>1\)
Vậy \(x>1\) thì \(B< 0\)
Câu c :
Để \(B=-2\Leftrightarrow-\dfrac{x-1}{\sqrt{x}}=-2\)
\(\Leftrightarrow\left(\dfrac{-\left(x-1\right)}{\sqrt{x}}\right)^2=\left(-2\right)^2\)
\(\Leftrightarrow\dfrac{x^2-2x+1}{x}=4\)
\(\Leftrightarrow\dfrac{x^2-2x+1}{x}=\dfrac{4x}{x}\)
\(\Leftrightarrow x^2-2x+1=4x\)
\(\Leftrightarrow x^2-6x+1=0\)
\(\Delta=\left(-6\right)^2-4=32>0\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{6+\sqrt{32}}{2}=3+2\sqrt{2}\\x_1=\dfrac{6-\sqrt{32}}{2}=3-2\sqrt{2}\end{matrix}\right.\)
Vậy \(x=3+2\sqrt{2}\) hoặ \(x=3-2\sqrt{2}\) thì \(B=-2\)
Câu a :
Ta có : \(\sqrt{5+3x}-\sqrt{5-3x}=a\)
\(\Leftrightarrow\left(\sqrt{5+3x}-\sqrt{5-3x}\right)^2=a^2\)
\(\Leftrightarrow5+3x-2\sqrt{\left(5+3x\right)\left(5-3x\right)}+5-3x=a^2\)
\(\Leftrightarrow10-2\sqrt{25-9x^2}=a^2\)
\(\Leftrightarrow2\sqrt{25-9x^2}=10-a^2\)
\(\Leftrightarrow\sqrt{25-9x^2}=\dfrac{10-a^2}{2}\)
\(\Leftrightarrow25-9x^2=\dfrac{\left(a^2-10\right)^2}{2}\)
\(\Leftrightarrow9x^2=25-\dfrac{\left(a^2-10\right)^2}{2}\)
\(\Leftrightarrow3x=\sqrt{\dfrac{50-\left(a^2-10\right)^2}{2}}\)
\(\Leftrightarrow x=\dfrac{\sqrt{50-\left(a^2-10\right)^2}}{3\sqrt{2}}\)
\(P=\dfrac{3\sqrt{2}.\sqrt{10+2\sqrt{\dfrac{10-a^2}{2}}}}{\sqrt{50-\left(a^2-10\right)^2}}\)
Bạn tự rút gọn nữa nhé :))
Câu b : \(M=\dfrac{2x+y+z-15}{x}+\dfrac{x+2y+z-15}{y}+\dfrac{x+y+2z-24}{z}\)
\(=\dfrac{x-3}{x}+\dfrac{y-3}{y}+\dfrac{z-12}{z}\)
\(=3-3\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{4}{z}\right)\le3-3\left[\dfrac{\left(1+1+2\right)^2}{12}\right]=-1\)
bai nay t lam roi vao trang chu cua nick thangbnsh cua t keo xuong tim la thay
Câu hỏi của Tuyển Trần Thị - Toán lớp 9 | Học trực tuyến