K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2023

Parabol qua A(4;-3) và đỉnh I(1;5) ta có : 

-3 = 16a - 4b + c

5 = a - b + c

\(-\dfrac{\left(-b\right)}{2a}=1\Leftrightarrow b-2a=0\) 

Giải hệ trên ta có  : \(a=-\dfrac{8}{9};b=-\dfrac{16}{9};c=\dfrac{37}{9}\)

 

4 tháng 9 2021

Tìm Parabol (P): y=ax2​+bx+c  đi qua điểm A(1;0) và có tung độ đỉnh bằng -1

NV
7 tháng 11 2021

\(\left\{{}\begin{matrix}\dfrac{4ac-b^2}{4a}=1\\4a+2b+c=0\\4a-2b+c=-8\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}4ac-b^2=4a\\4a+2b+c=0\\4b=8\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}b=2\\4ac-4=4a\\4a+4+c=0\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}b=2\\ac-1=a\\c=-4a-4\end{matrix}\right.\)

\(\Rightarrow a\left(-4a-4\right)-1=a\)

\(\Rightarrow4a^2+5a+1=0\) \(\Rightarrow\left[{}\begin{matrix}a=-1\Rightarrow c=0\\a=-\dfrac{1}{4}\Rightarrow c=-3\end{matrix}\right.\)

Vậy có 2 pt (P): \(\left[{}\begin{matrix}y=-x^2+2x\\y=-\dfrac{1}{4}x^2+2x-3\end{matrix}\right.\)

4 tháng 9 2021

(P) có đỉnh là I(-1;5) => \(-\frac{b}{2a}=-1\Rightarrow b=2a\)  (1)

và (P) đi qua I(-1; 5) => tại x = -1; y = 5 thì a - b + c = 5                                     (2)

(P) đi qua điểm A(1; 1) => tại x = 1; y = 1 thì a + b + c = 1(3)

thế (1) vào (2): -a + c = 5

thế (1) vào (3): 3a + c = 1 

giải hệ phtrinh ta được a = -1; c = 4

=> b = 2a = -2

giá trị biểu thức 3a + 2b + c = -3 - 4 + 4 = -3

4 tháng 9 2021

cảm ơn bạn rất nhiều


 

16 tháng 11 2023

loading...  loading...  loading...  loading...  

17 tháng 11 2023

a: Vì (P) đi qua A(0;1); B(1;2); C(3;-1) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}a\cdot0^2+b\cdot0+c=1\\a\cdot1^2+b\cdot1+c=2\\a\cdot3^2+b\cdot3+c=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}c=1\\a+b+1=2\\9a+3b+1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=1\\a+b=1\\9a+3b=-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}c=1\\9a+9b=9\\9a+3b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=1\\6b=11\\a+b=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}c=1\\b=\dfrac{11}{6}\\a=1-\dfrac{11}{6}=-\dfrac{5}{6}\end{matrix}\right.\)

b: Vì (P) đi qua M(0;-1); N(1;0) và P(2;3) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}a\cdot0^2+b\cdot0+c=-1\\a\cdot1^2+b\cdot1+c=0\\a\cdot2^2+b\cdot2+c=3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}c=-1\\a+b-1=0\\4a+2b-1=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=-1\\a+b=1\\4a+2b=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}c=-1\\a+b=1\\2a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=-1\\-a=-1\\a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=-1\\a=1\\b=0\end{matrix}\right.\)

c: Vì (P) đi qua M(1;-2); N(0;4); P(2;1) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}a\cdot1^2+b\cdot1+c=-2\\a\cdot0^2+b\cdot0+c=4\\a\cdot2^2+b\cdot2+c=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a+b+c=-2\\c=4\\4a+2b+c=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=4\\a+b=-2-c=-6\\4a+2b=1-4=-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}c=4\\4a+4b=-24\\4a+2b=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=4\\2b=-21\\a+b=-6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}c=4\\b=-\dfrac{21}{2}\\a=-6-b=-6+\dfrac{21}{2}=\dfrac{9}{2}\end{matrix}\right.\)

d: Hoành độ đỉnh là 2 nên -b/2a=2

=>b=-4a(1)

Thay x=3 và y=1 vào (P), ta được:

\(a\cdot3^2+b\cdot3+c=1\)

=>\(9a+3b+c=1\left(2\right)\)

Thay x=-1 và y=2 vào (P), ta được:

\(a\cdot\left(-1\right)^2+b\left(-1\right)+c=2\)

=>a-b+c=2(3)

Từ (1),(2),(3), ta có hệ phương trình:

\(\left\{{}\begin{matrix}b=-4a\\9a+3b+c=1\\a-b+c=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-4a\\9a-12a+c=1\\a+4a+c=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=-4a\\-3a+c=1\\5a+c=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-4a\\-8a=-1\\5a+c=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a=\dfrac{1}{8}\\b=-4\cdot\dfrac{1}{8}=-\dfrac{1}{2}\\c=2-5a=2-\dfrac{5}{8}=\dfrac{11}{8}\end{matrix}\right.\)

6 tháng 6 2019

(P) : y = ax2 + bx + c

Parabol có đỉnh I(1 ; 4) ⇒ –b/2a = 1 ⇒ b = –2a ⇒ 2a + b = 0.

Parabol đi qua I(1; 4) ⇒ 4 = a.12 + b . 1 + c ⇒ a + b + c = 4.

Paraol đi qua D(3; 0) ⇒ 0 = a.32 + b.3 + c ⇒ 9a + 3b + c = 0.

Giải hệ phương trình Giải bài 12 trang 51 sgk Đại số 10 | Để học tốt Toán 10 

ta được : a = –1 ; b = 2 ; c = 3.

Vậy a = –1 ; b = 2 ; c = 3.

26 tháng 11 2021

a=-1,b=2,c=3

4 tháng 12 2021

\(a,\Leftrightarrow\left\{{}\begin{matrix}9a+3b=-6\\\dfrac{b}{2a}=\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+b=-2\\3a=b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{3}\\b=-1\end{matrix}\right.\\ \Leftrightarrow\left(P\right):y=-\dfrac{1}{3}x^2-x+2\\ b,\Leftrightarrow\left\{{}\begin{matrix}4a+2b=-3\\-\dfrac{b}{2a}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a+2b=-3\\4a-b=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{4}\\b=-1\end{matrix}\right.\Leftrightarrow\left(P\right):y=-\dfrac{1}{4}x^2-x+2\)