K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) => n-1+3 chia hết n-1

Mà n-1 chia hết n-1

=> 3 chia hết cho n-1

=> n-1 thuộc Ước của 3

........

b)=> 2(n+1) +5 chia hết n+1

mà 2(n+1) chia hết n+1

=> 5 chia hết cho n+1

=> n+1 thuộc ước của 5

.......

3 tháng 3 2020

a,Ta có :\(n+2⋮n-1\)

\(=>n-1+3⋮n-1\)

Do \(n-1⋮n-1\)

\(=>3⋮n-1\)

\(=>n-1\inƯ\left(3\right)\)

\(=>n-1\in\left\{-3;-1;1;3\right\}\)

\(=>n\in\left\{-2;0;2;4\right\}\)

b,\(2n+7⋮n+1\)

\(=>2.\left(n+1\right)+5⋮n+1\)

Do \(2.\left(n+1\right)⋮n+1\)

\(=>5⋮n+1\)

\(=>n+1\inƯ\left(5\right)\)

\(=>n+1\in\left\{-5;-1;1;5\right\}\)

\(=>n\in\left\{-6;-2;0;4\right\}\)

29 tháng 4 2017

BÀi 1

Để A \(\in\) Z

=>\(\left(n+2\right)⋮\left(n-5\right)\)

=>\([\left(n-5\right)+7]⋮\left(n-5\right)\)

=>\(7⋮\left(n-5\right)\)

=>\(n-5\in\left\{1;7;-1;-7\right\}\)

=>\(n\in\left\{6;13;4;-2\right\}\)

Vậy \(n\in\left\{6;13;4;-2\right\}\)

29 tháng 4 2017

Giúp mk nha

Arigatou gozaimasu!

11 tháng 12 2018

d,Gọi ƯCLN (n.(n+1) /2 , 2n+1 ) =d

=) n.(n+1) /2 chia hết cho d

2n+1 chia hết cho d

=)2.(n.(n+1) /2) chia hết cho d

2n+1 chia hết cho d

=)2n2+2n chia hết cho d

2n+1 chia hết cho d

=) ( 2n2+2n) - (2n2+n)chia hết cho d

=)n chia hết cho d

Lại có 2n+1 chia hết cho d

=) 2n chia hết cho d

2n +1 chia hết cho d

=) (2n +1 ) - (2n ) chia hết cho d

=) 1 chia hết cho d

=) d thuộc Ư ( 1)

=) d=1

Vậy n.(n+1) /2 và 2n + 1 là hai số nguyên tố cùng nhau

11 tháng 12 2018

a, 2n + 5 và 3n + 7

Gọi ƯCLN ( 2n+5, 3n + 7)=d

=) 2n+5 chia hết cho d , =) 3. (2n+5) chia hết cho d

3n +7 chia hết cho d , 2. ( 3n+7) chia hết cho d

=) 6n+15 chia hết cho d

6n+14 chia hết cho d

=)(6n+15 )- (6n+14) chia hết cho d

=) 1 chia hết cho d

=) d thuộc ƯC ( 1 )

=) ƯCLN (2n+5,3n+7)=1

Vậy 2n+5 và 3n+7 là hai số nguyên tố cùng nhau

Câu b , c tượng tự bạn nhé !

21 tháng 12 2020

biết rồi

20 tháng 2 2018

\(b,n+4⋮n+2\)

\(\Rightarrow n+2+2⋮n+2\)

       \(n+2⋮n+2\)

\(\Rightarrow2⋮n+2\)

\(\Rightarrow n+2\inƯ\left(2\right)=\left\{1;2\right\}\)

\(\Rightarrow n\in\left\{-1;0\right\}\) mà n thuộc N

=> n = 0

d, \(2n+6⋮n+3\)

\(\Rightarrow2\left(n+3\right)⋮n+3\)

        \(n+3⋮n+3\Rightarrow2\left(n+3\right)⋮n+3\)

\(\Rightarrow\) n = bao nhiêu cx đc miễn là n thuộc N

20 tháng 2 2018

a)n={-3;-1;-5;0}

b)n={-3;-1;-5;0}

c)n=rỗng

d)n=rỗng

26 tháng 2 2017

Bài 1:

b) Ta có:

\(16^5=2^{20}\)

\(\Rightarrow B=16^5+2^{15}=2^{20}+2^{15}\)

\(\Rightarrow B=2^{15}.2^5+2^{15}\)

\(\Rightarrow B=2^{15}\left(2^5+1\right)\)

\(\Rightarrow B=2^{15}.33\)

\(\Rightarrow B⋮33\) (Đpcm)

c) \(C=5+5^2+5^3+5^4+...+5^{100}\)

\(\Rightarrow C=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)

\(\Rightarrow C=1\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{98}\left(5+5^2\right)\)

\(\Rightarrow\left(1+5^2+...+5^{98}\right)\left(5+5^2\right)\)

\(\Rightarrow C=Q.30\)

\(\Rightarrow C⋮30\) (Đpcm)

26 tháng 2 2017

Bài 1 : a, \(A=1+3+3^2+...+3^{118}+3^{119}\)

\(A=\left(1+3+3^2+3^3\right)+...+\left(3^{116}+3^{117}+3^{118}+3^{119}\right)\)

\(A=\left(1+3+3^2+3^3\right)+...+3^{116}\left(1+3+3^2+3^3\right)\)

\(A=1.30+...+3^{116}.30=\left(1+...+3^{116}\right).30⋮3\)

Vậy \(A⋮3\)

b, \(B=16^5+2^{15}=\left(2.8\right)^5+2^{15}\)

\(=2^5.8^5+2^{15}=2^5.\left(2^3\right)^5+2^{15}\)

\(=2^5.2^{15}+2^{15}.1=2^{15}\left(32+1\right)=2^{15}.33⋮33\)

Vậy \(B⋮33\)

c, Tương tự câu a nhưng nhóm 2 số

Bài 2 : a, \(n+2⋮n-1\) ; Mà : \(n-1⋮n-1\)

\(\Rightarrow\left(n+2\right)-\left(n-1\right)⋮n-1\)

\(\Rightarrow n+2-n+1⋮n-1\Rightarrow3⋮n-1\)

\(\Rightarrow n-1\in\left\{1;3\right\}\Rightarrow n\in\left\{2;4\right\}\)

Vậy \(n\in\left\{2;4\right\}\) thỏa mãn đề bài

b, \(2n+7⋮n+1\)

Mà : \(n+1⋮n+1\Rightarrow2\left(n+1\right)⋮n+1\Rightarrow2n+2⋮n+1\)

\(\Rightarrow\left(2n+7\right)-\left(2n+2\right)⋮n+1\)

\(\Rightarrow2n+7-2n-2⋮n+1\Rightarrow5⋮n+1\)

\(\Rightarrow n+1\in\left\{1;5\right\}\Rightarrow n\in\left\{0;4\right\}\)

Vậy \(n\in\left\{0;4\right\}\) thỏa mãn đề bài

c, tương tự phần b

d, Vì : \(4n+3⋮2n+6\)

Mà : \(2n+6⋮2n+6\Rightarrow2\left(2n+6\right)⋮2n+6\Rightarrow4n+12⋮2n+6\)

\(\Rightarrow\left(4n+12\right)-\left(4n+3\right)⋮2n+6\)

\(\Rightarrow4n+12-4n-3⋮2n+6\Rightarrow9⋮2n+6\)

\(\Rightarrow2n+6\in\left\{1;2;9\right\}\Rightarrow2n=3\Rightarrow n\in\varnothing\)

Vậy \(n\in\varnothing\)

30 tháng 6 2018

4n - 1 \(⋮n-2\)

4n - 8 + 7 \(⋮n-2\)

=> 7\(⋮n-2\)

=> n-2\(\in\text{Ư}\left(7\right)\)

=> n - 2\(\in\left\{-7;-1;1;7\right\}\)

30 tháng 6 2018

b và c nữa bạn