Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm n để 3n+1 và 5n+4 nguyên tố cùng nhau
Giải:
Gọi d là ước chung của 3n+1 và 5n+4
Suy ra 3n+1 và 5n+4 chia hết cho d
=> 5.(3n+1) và 3.(5n+4) chia hết cho d
hay 15n+5 và 15n+12 chia hết cho d
=>15n+12 - (15n+5 ) chia hết cho d
hay 7chia hết cho d
=> d là ước của 7
mà Ư(7)= {1;7}
Nếu d=7 thì 3n+1 chia hết cho 7
=> 3n+1 +14 chia hết cho 7
=>3n+15 chia hết cho 7
3(n+5) chia hết cho 7
Mà Ư CLN(3,7)=1 nên n+5 chia hết cho 7
=> n=7k-5 (k thuộc N*)
+ Nếu n= 7k-5 thì suy ra:
3n+1=3.(7k-5)+1=3.7.k-15+1=3.7.k-14 chia hết cho 7
5n+4=5(7k-5)+4=5.7k-25+4=5.7k-21 chia hết cho 7
+ Nếu n khác 7k-5 thì Ư CLN(3n+1,5n+4)=1 hay 3n+1 và 5n+4 nguyên tố cùng nhau
Vậy n khác 7k-5 ( k thuộc N*) thì 3n+1 và 5n+4 nguyên tố cùng nhau
a) Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)
=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d
=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d
=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d
=> (6n + 15) - (6n + 14) chia hết cho d
=> 6n + 15 - 6n - 14 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(2n+5; 3n+7) = 1
=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)
Câu b lm tương tự
Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)
=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d
=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d
=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d
=> (6n + 15) - (6n + 14) chia hết cho d
=> 6n + 15 - 6n - 14 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(2n+5; 3n+7) = 1
=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)
Câu b lm tương tự
Ta có : k là ƯCLN của 7n + 10 và 5n + 7
Vậy : 7n + 10 chia hết cho k ; 5n + 7 chia hết cho k
Hay 5(7n + 10 ) và 7(5n + 7 )
35n + 50 và 35n + 49 chia hết cho k
=> ĐPCM
Hai bài kia bạn làm tương tư nhé , chúc may mắn
Gọi UCLN 3n+4 va 5n+1 là d
3n+4 chia hết cho d , 5n+1 chia hết cho d
5.(3n+4) chia hết cho d , 3.(5n+1) chia hết cho d
15n+20 chc d , 15n+3 chc d
15n + 20 - 15n + 3 chia hết cho d
17 chia hết cho d
d=17
Bn tự kl nhé
Gọi d là ƯCLN(5n+7, 3n+4), d \(\in\)N*
\(\Rightarrow\hept{\begin{cases}5n+7⋮d\\3n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(5n+7\right)⋮d\\5\left(3n+4\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}15n+21⋮d\\15n+20⋮d\end{cases}}}\)
\(\Rightarrow\left(15n+21\right)-\left(15n+20\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(5n+7,3n+4\right)=1\)
\(\Rightarrow\) 5n+7 và 3n+4 là hai số nguyên tố cùng nhau.