Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c2 ;nhan vo duocx2(sinx/2 .cosx/2)=x2/2(sinx+cosx) lai nhan vo roi tung phan nhe
ĐÁP án là D \(\int\left(tan\left(x\right)^2\right)=\int\left(\frac{1}{cos\left(x\right)^2}-1\right)=-x+tan\left(x\right)\)
đặt x2=t \(\Rightarrow\) x=\(\pm\) \(\sqrt{t}\) và \(dx=\pm d\sqrt{t}\)
ta có A=\(\int e^{x^2}dx=\pm\int e^td\left(\sqrt{t}\right)\)
theo phương pháp nguyên hàm từng phần ta có
A=\(\pm\left[e^t\sqrt{t}-e^t\int\sqrt{t}\right]\)
=\(\pm\left[e^t\sqrt{t}-\frac{3}{2}.e^t.\sqrt[3]{t^2}\right]\)+C
Thay t=x2 vào ta tìm được 2 họ nguyên hàm của \(e^{x^2}\)
\(y=x^3-mx^2+\left(1-2m\right)x+1\)
\(y'=3x^2-2mx+1-2m\)
Để đồ thị hàm số đã cho có hai cực trị nằm về hai phía của trục tung thì phương trình \(y'=0\)có hai nghiệm phân biệt \(x_1,x_2\)thỏa mãn \(x_1x_2< 0\).
Ta có: \(y'=0\Leftrightarrow3x^2-2mx+1-2m=0\)(1)
Để (1) có hai nghiệm phân biệt thỏa mãn \(x_1x_2< 0\)thì:
\(\hept{\begin{cases}\Delta'=m^2-3\left(1-2m\right)>0\\\frac{1-2m}{3}< 0\end{cases}}\Leftrightarrow m>\frac{1}{2}\).
Vậy \(m>\frac{1}{2}\)thỏa mãn ycbt.
(sinx)4+(cosx)2+ 1 =>sinx4+sinx2 +2 => (sinx2-1/2)+3/4 => (((((Min = 3/4)))))
=> sinx=1/2
\(\int\frac{2^{x-1}}{e^x}dx=\frac{1}{2}\int\left(\frac{2}{e}\right)^xdx=\frac{1}{2}.\frac{\left(\frac{2}{e}\right)^x}{ln\left(\frac{2}{e}\right)}+C=\frac{2^x}{2e^x\left(ln2-1\right)}+C\)