Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(\left(x+y+z\right)^2=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)
Biến đổi vế trái ta được :
\(\left(x+y+z\right)^2=\left(x+y+z\right)\left(x+y+z\right)\)
\(=x^2+xy+xz+xy+y^2+yz+zx+zy+z^2\)
\(=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)
Vậy \(\left(x+y+z\right)^2=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)
A = 4x2y2 - (x2 + y2 - z2)2 = (2xy - x2 - y2 + z2)(2xy + x2 + y2 - z2) = [z2 - (x - y)2].[(x + y)2 - z2] = (z - x + y)(z + x - y)(x + y + z)(x + y - z)
Vì x,y,z > 0 ; x + y > z ; z + y > x và z + x > y (vì x,y,z là độ dài 3 cạnh của 1 tam giác) nên các nhân tử của A đều dương => A > 0
Bạn ko hiểu chỗ nào thì hỏi mình nhé! Mình sửa (x2 + y2 - z2) thành (x2 + y2 - z2)2
Bạn tham khảo tại link sau:
Câu hỏi của Lenkin san - Toán lớp 8 | Học trực tuyến
Xét \(VT=x^3+y^3+z^3-3xyz=\left(x+y\right)^3-3x^2y-3xy^2+z^3-3xyz\)
\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right).\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right).\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=VP\)
Vậy ta có đpcm
1) x3 + y3 + z3 - 3xyz
= ( x + y )3 - 3xy( x + y ) + z3 - 3xyz
= [ ( x + y )3 + z3 ) - [ 3xy( x + y ) + 3xyz ]
= ( x + y + z )[ ( x + y )2 - ( x + y )z + z2 ] - 3xy( x + y + z )
= ( x + y + z )( x2 + y2 + z2 + 2xy - xz - yz - 3xy )
= ( x + y + z )( x2 + y2 + z2 - xy - yz - xz )
2) Tạm thời đang bí chưa làm được :(
3) ( x2 - 2x )2( x2 - 2x - 1 ) - 6 ( đề có vấn đề -- )
4) x4 - 7x3 + 14x2 - 7x + 1
= x4 - 3x2 - 4x2 + x2 + 12x2 + x2 - 4x - 3x + 1
= ( x4 - 3x2 + x2 ) - ( 4x3 - 12x2 + 4x ) + ( x2 - 3x + 1 )
= x2( x2 - 3x + 1 ) - 4x( x2 - 3x + 1 ) + ( x2 - 3x + 1 )
= ( x2 - 3x + 1 )( x2 - 4x + 1 )
Giang ho dại gái à !
cậu ghi không rõ nên tớ không biết