K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NT
1
21 tháng 2 2017
Đề bài này khả năng sai nhé, chắc là <= vì gần như tích nào cũng lớn hơn tổng cả
SỬA LẠI: <=
Ta có: \(xyz\le x+y+z\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\ge1\)
Vai trò của x,y,z như nhau nên giả sử: \(x\ge y\ge z\Rightarrow xy\ge xz\ge yz\)
Vậy: \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\le\frac{3}{yz}\Leftrightarrow\frac{3}{yz}\ge1\Leftrightarrow3\ge yz\)
Vậy yz=1, yz=2, yz=3
TH1: yz=1 => y=z=1 thay vào ta được x=1
TH2: yz=2 => z=1, y=2
Thay vào có: \(2x\le x+3\Leftrightarrow x\le3\)
=> x=2 hoặc x=3
Thử lại thấy thỏa mãn
TH3: zy=3 => z=1, y=3
Thay vào ta được: \(3x\le x+4\Leftrightarrow x\le\frac{3}{2}\)loại do x>=y
Vậy (x,y,x)=(1,1,1); (3,2,1);(2,2,1)
HN
0
x+y+z=xyz+1
Giả sử x lớn hơn =y lớn hơn =z
=> 3x> xyz+1 >xyz
=> 3> yz
do y,z nguyên dương nnee tìm đc y,z
bạn khó hiểu chỗ nào