Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(xy^2+\left(2x-27\right)y+x=0\)
Xét phương trình theo ẩn y. Để phương trình có nghiệm thì
\(\Delta_y=\left(2x-27\right)^2-4x.x\ge0\)
\(\Rightarrow1\le x\le6\)
Thế lần lược tực 1 tới 6 vô ta chỉ nhận \(\left(x;y\right)=\left(6;2\right)\)
\(A=2x^2+y^2+2xy-6x-2y+10\)
\(=\left(\left(x^2+2xy+y^2\right)-2\left(x+y\right)+1\right)+\left(x^2-4x+4\right)+5\)
\(=\left(x+y-1\right)^2+\left(x-2\right)^2+5\ge5\)
Vậy GTNN là A = 5 khi \(\hept{\begin{cases}x=2\\y=-1\end{cases}}\)
a) \(2xy-y^2-6x+4y=7\)
\(\Leftrightarrow2xy-6x-y^2+3y+y-3=4\)
\(\Leftrightarrow\left(2x-y+1\right)\left(y-3\right)=4\)
Tới đây bạn xét bảng giá trị thu được nghiệm \(\left(x,y\right)\).
b) \(x^2+y^2-x⋮xy\Rightarrow x^2+y^2-x⋮x\Rightarrow y^2⋮x\).
Đặt \(y^2=kx,\left(k\inℤ\right),d=\left(x,k\right)\).
\(x^2+\left(kx\right)^2-x⋮xy\Rightarrow x+k^2x-1⋮y\).
suy ra \(x+k^2x-1⋮d\Rightarrow1⋮d\Rightarrow d=1\).
Do đó \(kx=y^2\)mà \(\left(k,x\right)=1\)nên \(x\)là số chính phương.
pt⇔y2(x2−7)=(x+y)2(1)
Phương trình đã cho có nghiệm x=y=0x=y=0
Xét x,y\ne0x,y≠0, từ (1)(1) suy ra x^2-7x2−7 là một số chính phương
Đặt x^2-7=a^2x2−7=a2 ta có:
\left(x-a\right)\left(x+a\right)=7(x−a)(x+a)=7 từ đây tìm được x
Vậy (x,y)=(0,0);(4,-1);(4,2);(-4,1);(-4;-2)(x,y)=(0,0);(4,−1);(4,2);(−4,1);(−4;−2)