Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhân hai vế của phương trình với 6xy:
6y+6x+1=xy6y+6x+1=xy
Đưa về phương trình ước số:
x(y−6)−6(y−6)=37x(y−6)−6(y−6)=37
⇔(x−6)(y−6)=37⇔(x−6)(y−6)=37
Do vai trò bình đẳng của xx và yy, giả sử x⩾y⩾1x⩾y⩾1, thế thì x−6⩾y−6⩾−5x−6⩾y−6⩾−5.
Chỉ có một trường hợp:
{−6=37y−6=1⇔{=43y=7{−6=37y−6=1⇔{=43y=7
Đáp số: (43;7),(7;43)
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)
Do vai trò của x,y,z là như nhau nên không mất tính tổng quát, giả sử \(x\ge y\ge z\ge1\)(nguyên dương)
\(\Rightarrow\frac{1}{x}\le\frac{1}{y}\le\frac{1}{z}.\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\le\frac{1}{z}+\frac{1}{z}+\frac{1}{z}=\frac{3}{z}.\)
\(\Rightarrow z\le1\) mà \(z\ge1\)
\(\Rightarrow z=1.\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=2-\frac{1}{1}=1\le\frac{1}{y}+\frac{1}{y}=\frac{2}{y}.\)
\(\Rightarrow y\le2\)mà \(y\ge1\)
\(\Rightarrow y\in\left\{1;2\right\}.\)
*Nếu \(y=1\Rightarrow\frac{1}{x}=1-\frac{1}{1}=0\Rightarrow x=\frac{1}{0}\)(vô lí)
*Nếu \(y=2\Rightarrow\frac{1}{x}=2-\frac{1}{2}=\frac{1}{2}\Rightarrow x=2\)(thỏa mãn)
Vậy \(x=y=2,z=1.\)
Ta gọi phương trinh của x+Y=Z = XYZ LÀ (2) .Do vai trò bình đẳng của x,y,z trong phương trình, trước hết ta xét x bé hơn hoặc = y < hoặc = z
VÌ x,y,z nguyên dương nên xyz khác 0 , do x , hoặc = y ,học = z => xyz= x+y+z < hoặc = 3z => xy <3 => x thuộc {1;2;3}
Nếu xy=1 => x=y=1 . Thay vào (2) ta có : 2+z =z ( vô lý)
nẾU XY=2 , Do x < hoặc = y nên x=1,y=2 . tHAY VÀO (2) ta có ; z=3
NÊú xy =3 , do x , hoặc = y nên x=1, y=3. Thay vào (2) ta có , z=2
Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1;2;3)
TK MK NHA!!
Ta biện luận theo z nguyên dương
* Nếu z>=3
=> x+y+1\(\ge\)3xy nên x+y+1 -3xy\(\ge\)0 => x(1-y) +(y(1-x)+(1-xy)\(\ge\)0 (1)
Do x, y nguyên dương ta có x,y\(\ge\)1
=> 1-y\(\le\)0 và 1-x\(\le\)0 và 1-xy\(\le\)0
=> x(1-y) +(y(1-x)+(1-xy)\(\le\)0 (2)
Từ (1) và (2) => Tổng bằng 0 khi:
{x(1-y)=0
{y(1-x)=0
{(1-xy)=0
=> x=1, y=1
Vậy nghiệm là (1;1;3)
** Nếu z=2
=> x+y+1=2xy
=> x(y-1) + y(x-1)=1
Tổng 2 số nguyên không âm bằng 1 chỉ là một trong 2 cặp 0,1 hoặc 1,0 nên :v
{(x(y-1)=0
{ y(x-1)=1 => x=2, y=1
hoặc
{(x(y-1)=1
{ y(x-1)=0 => x=1, y=2
Vậy có 2 cặp nghiệm là (2;1;2) và (1;2;2)
*Nếu z=1
=> x+y+1=xy
=> (x-1)(y-1)=2
=> {x-1=1
{y-1=2 => x=2, y=3
Hoặc
{x-1=2
{y-1=1 => x=3, y=2
Vậy có 2 cặp nghiệm (2,3,1) và (3;2;1)