Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Nhìn đề bài hãi quá :(
a/ \(A=3\sin\left(5.2\pi+\pi-x\right).\sin\left(2\pi+\frac{\pi}{2}-x\right)+2\sin\left(4.2\pi+\pi+x\right)\)
\(A=3\sin\left(\pi-x\right).\sin\left(\frac{\pi}{2}-x\right)+2\sin\left(\pi+x\right)\)
\(A=3\sin x.\cos x-2\sin x=\sin x\left(3\cos x-2\right)\)
b/ \(B=\sin\left(5.2.180^0+180^0+x\right)-\cos\left(90^0-x\right)+\tan\left(90^0+180^0-x\right)+\cot\left(2.180^0-x\right)\)
\(B=\sin\left(180^0+x\right)-\sin x+\tan\left(90^0-x\right)+\cot\left(-x\right)\)
\(B=-\sin x-\sin x+\cot x-\cot x=-2\sin x\)
c/ \(C=-2\sin\left(-(2\pi+\frac{\pi}{2}-x)\right)-3\cos\left(2\pi+\pi-x\right)+5\sin\left(2.2\pi-\left(\frac{\pi}{2}+x\right)\right)+\cot\left(\pi+\frac{\pi}{2}-x\right)\)
\(C=2\sin\left(\frac{\pi}{2}-x\right)-3\cos\left(\pi-x\right)-5\sin\left(\frac{\pi}{2}+x\right)+\cot\left(\frac{\pi}{2}-x\right)\)
\(2\cos x+3\cos x-5\cos x+\tan x=\tan x\)
d/ \(D=\tan\left(-\left(\pi-x\right)\right).\cos\left(-\left(\frac{\pi}{2}-x\right)\right).\left(-\cos x\right)\)
\(D=\tan\left(\pi-x\right).\cos\left(\frac{\pi}{2}-x\right).\cos x\)
\(D=-\tan x.\sin x.\cos x=-\sin^2x\)
e/ \(E=\cos\left(28.2\pi+\pi+\frac{\pi}{2}-x\right)+\sin\left(-\left(58.2\pi+\pi+\frac{\pi}{2}-x\right)\right)+\cos\left(-\left(46.2\pi+\pi+\frac{\pi}{2}-x\right)\right)+\sin\left(35.2\pi+\pi+\frac{\pi}{2}-x\right)\)
\(E=-\cos\left(\frac{\pi}{2}-x\right)+\sin\left(\frac{\pi}{2}-x\right)-\cos\left(\frac{\pi}{2}-x\right)-\sin\left(\frac{\pi}{2}-x\right)\)
\(E=-2\sin x\)
Thôi, stop ở đây, làm nữa chắc tẩu hỏa nhập ma quá :(
Mình thấy hầu hết các bài này đều có chung 1 điểm, và chắc đó cũng là điểm mà bạn thắc mắc: Đó chính là tách các hạng tử ra và biến đổi
Tách cũng đơn giản thôi, cứ gặp sin, cos thì tách sao cho về dạng 2pi+..., gặp tan, cot thì pi.
Còn tách mấy cái phân số như vầy:
Ví dụ \(\frac{7\pi}{2}\) , 7 chia 2 được 3, ta lấy \(\frac{7}{2}-3=\frac{1}{2}\) thì suy ra: \(\frac{7\pi}{2}=3\pi+\frac{\pi}{2}\)
Đó, thế là được :D

\(\cos^2=\frac{1}{1+tan^2x}=\frac{1}{1+25}\\ \Rightarrow cos=\frac{1}{\sqrt{26}}\left(6\pi< x< \frac{13}{2}\right)\)
\(\Rightarrow sin=\frac{5}{\sqrt{26}}\\ \Rightarrow sin2x=2sinxcosx=2\times\frac{5}{\sqrt{26}}\times\frac{1}{\sqrt{26}}=\frac{5}{13}\)
b) \(cos^2=1-sin^2x=\frac{16}{25}\\ \Rightarrow cos=-\frac{4}{5}\left(-\frac{3\pi}{2}< x< -\pi\right)\\\Rightarrow tanx=-\frac{3}{4} \\ tan\left(x-\frac{\pi}{4}\right)=\frac{tanx-tan\frac{\pi}{4}}{1+tanxtan\frac{\pi}{4}}=-7\)
6π là số chẵn nên viết được dưới dạng k2π nên nó quay về mức 0 còn \(\frac{13\pi}{2}=\frac{\pi}{2}+6\pi\) nên tóm lại nó lằm từ (0<x<\(\frac{\pi}{2}\))

a/ \(\pi< x< \frac{3\pi}{2}\Rightarrow sinx< 0\)
\(\Rightarrow sinx=-\sqrt{1-cos^2x}=-\frac{5}{13}\)
\(sin\left(\frac{\pi}{3}-x\right)=sin\frac{\pi}{3}cosx-cos\frac{\pi}{3}sinx=\frac{\sqrt{3}}{2}.\left(-\frac{12}{13}\right)-\frac{1}{2}.\left(-\frac{5}{13}\right)=\frac{5-12\sqrt{3}}{26}\)
b/ \(\pi< x< \frac{3\pi}{2}\Rightarrow cosx< 0\)
\(\Rightarrow cosx=-\sqrt{1-sin^2x}=-\frac{3}{5}\)
\(cot\left(x-\frac{\pi}{4}\right)=\frac{cos\left(x-\frac{\pi}{4}\right)}{sin\left(x-\frac{\pi}{4}\right)}=\frac{sinx+cosx}{sinx-cosx}=7\)
c/ \(cot\left(\frac{5\pi}{2}-x\right)=cot\left(2\pi+\frac{\pi}{2}-x\right)=tanx=2\)
\(\Rightarrow tan\left(x+\frac{\pi}{4}\right)=\frac{tanx+tan\frac{\pi}{4}}{1-tanx.tan\frac{\pi}{4}}=\frac{2+1}{1-2.1}=-3\)

a/ \(\frac{\pi}{6}< x< \frac{\pi}{3}\Rightarrow cosx>0\)
\(cos^2x=\frac{1}{1+tan^2x}=\frac{1}{10}\)
\(cotx=\frac{1}{tanx}=\frac{1}{3}\)
Thay số và bấm máy
b/ \(\frac{\pi}{2}< a< \pi\Rightarrow\left\{{}\begin{matrix}sina>0\\tana< 0\end{matrix}\right.\)
\(sina=\sqrt{1-cos^2a}=\frac{3}{5}\)
\(tana=\frac{sina}{cosa}=-\frac{3}{4}\)
\(A=\frac{6sina.cosa-\frac{2tana}{1-tan^2a}}{cosa-\left(2cos^2a-1\right)}\)
Thay số và bấm máy
c/ \(\frac{3\pi}{2}< x< 2\pi\Rightarrow\left\{{}\begin{matrix}cosx>0\\sinx< 0\end{matrix}\right.\)
\(cosx=\frac{1}{\sqrt{1+tan^2x}}=\frac{1}{\sqrt{5}}\)
\(sinx=cosx.tanx=-\frac{2}{\sqrt{5}}\)
\(B=\frac{cos^2x+2sinx.cosx}{\frac{2tanx}{1-tan^2x}-\left(2cos^2x-1\right)}\)
Thay số

\(A=\frac{\frac{4sin^2x}{cos^2x}+\frac{5sinx.cosx}{cos^2x}+\frac{cos^2x}{cos^2x}}{\frac{sin^2x}{cos^2x}-\frac{2}{cos^2x}}=\frac{4tan^2x+5tanx+1}{tan^2x-2\left(1+tan^2x\right)}\)
\(=\frac{4.9-5.3+1}{9-2\left(1+9\right)}=...\)
Akai Haruma giúp em với ạ !!!
@Akai Haruma