K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2018

Áp dụng bất đẳng thức x2+y2≥2xyx2+y2≥2xy nên ta có x2+y2+xy≥3xyx2+y2+xy≥3xy
Mà x2+y2+xy=x2y2≥0x2+y2+xy=x2y2≥0 nên suy ra x2y2+3xy≤0⟺−3≤xy≤0x2y2+3xy≤0⟺−3≤xy≤0
Vì x,yx,y nguyên nên xyxy nguyên, vậy nên xy∈{−3,−2,−1,0}xy∈{−3,−2,−1,0}
Trường hợp xy=−3xy=−3 ta tìm được các nghiệm (−1,3),(3,−1),(−3,1),(1,−3)(−1,3),(3,−1),(−3,1),(1,−3)
Trường hợp xy=−2xy=−2 ta tìm được các nghiệm (−1,2),(2,−1),(1,−2),(−2,1)(−1,2),(2,−1),(1,−2),(−2,1)
Trường hợp xy=−1xy=−1 ta tìm được các nghiệm (−1,1),(1,−1)(−1,1),(1,−1)
Trường hợp xy=0xy=0 ta tìm được nghiệm (0,0)(0,0)
Thử lại thì thấy chỉ có các nghiệm (0,0),(1,−1),(−1,1)(0,0),(1,−1),(−1,1) thỏa mãn và đó là các nghiệm nguyên cần tìm 

6 tháng 1 2018

sorry @Thắng Hoàng mình nhầm đề, phải là

\(x^2y^2-xy=x^2+2y^2\)

22 tháng 9 2017

Thêm xy vào 2 vế:

 \(x^2+2xy+y^2=x^2y^2+xy\)(1)

\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy+1\right)\)

Ta thấy xy và xy+1 là 2 số nguyên liên tiếp, có tích là 1 số chính phương nên tồn tại 1 số bằng 0

xét xy=0, từ (1)=> \(x^2+y^2=0\Rightarrow x=y=0\)

xét xy+1=0=> xy=-1, => \(\left(x;y\right)=\orbr{\begin{cases}\left(1;-1\right)\\\left(-1;1\right)\end{cases}}\)

vậy nghiệm nguyên (x;y) của PT là: (0;0); (1;-1); (-1;1)

6 tháng 4 2020

PT \(\Leftrightarrow\left(y-5\right)x^2-\left(y-1\right)x+y-1=0\)

Với y=5 thì ta không tìm được x thỏa mãn

Với \(y\ne5\), ta có

\(\Delta=-3y^2+26-19\)

Để phương trình có nghiệm thì \(\Delta\ge0\Rightarrow1\le x\le7\)

Từ đó ta thế các giá trị của y vào phương trình tìm x (Bạn tự giải)

1 tháng 8 2015

=> 5x2 + 5xy + 5y2 = 7x + 14y

=> 5x2 + 5xy - 7x + 5y- 14y = 0 

=> 5x+ (5y -7).x + (5y - 14y) = 0   (*)

Tính \(\Delta\) = (5y - 7)- 4.5.(5y - 14y) = -75y2 + 210y + 49  

Để x nguyên thì \(\Delta\) là số chính phương <=> -75y2 + 210y + 49  = k( với k nguyên)

=> - 3. (25y- 2.5y.7 + 49) + 196 = k2

=> -3.(5y - 7)+ 196 = k2

=> 3.(5y - 7)+ k= 196 => 3. (5y-7)2  \(\le\) 196 => (5y - 7)2  \(\le\) 66 =>-8  \(\le\)  5y - 7 \(\le\) 8

=> -1/5  \(\le\) y \(\le\) 3

y nguyên nên y có thể bằng 0; 1;2;3

Với tưng giá trị của y ta thay vào (*) => x 

Các giá trị x; y nguyên tìm được là các giá trị thỏa mãn yêu cầu

7 tháng 10 2020

b) x2y + x + xy2 + y + 2xy = 9

xy(x + y + 2) + (x + y + 2) = 11

<=> (xy + 1)(x + y + 2) = 11

Xét các TH

+) \(\hept{\begin{cases}xy+1=1\\x+y+2=11\end{cases}}\) <=> \(\hept{\begin{cases}xy=0\\x+y=9\end{cases}}\) <=> x = 0 => y = 9 hoặc y = 0 => x = 9

+) \(\hept{\begin{cases}xy+1=-1\\x+y+2=-11\end{cases}}\)<=> \(\hept{\begin{cases}xy=-2\\x+y=-13\end{cases}}\) <=> \(\hept{\begin{cases}x=-13-y\\y\left(-13-y\right)=-2\end{cases}}\)

<=> \(\hept{\begin{cases}x=-13-y\\y^2+13y-2=0\end{cases}}\)(loại)

+) \(\hept{\begin{cases}xy+1=11\\x+y+2=1\end{cases}}\) <=> \(\hept{\begin{cases}xy=10\\x+y=-1\end{cases}}\) <=> \(\hept{\begin{cases}y\left(-1-y\right)=10\\x=-1-y\end{cases}}\) <=> \(\hept{\begin{cases}y^2+y+10=0\\x=-1-y\end{cases}}\)(loại)

+) \(\hept{\begin{cases}xy+1=-11\\x+y+2=-1\end{cases}}\) <=> \(\hept{\begin{cases}xy=-12\\x+y=-3\end{cases}}\) <=> \(\hept{\begin{cases}y\left(-3-y\right)=-12\\x=-3-y\end{cases}}\) <=> \(\hept{\begin{cases}y^2+3y-12=0\\x=-3-y\end{cases}}\) (loại)

17 tháng 11 2018

\(a\orbr{x=\frac{\pm\sqrt{5}-3}{4}}\)

\(b\hept{\begin{cases}x=5\\y=4\end{cases}}\)

17 tháng 11 2018

2)\(\Leftrightarrow\left(x^3-x^2y\right)+\left(y^3-xy^2\right)=5\)

\(\Leftrightarrow x^2\left(x-y\right)+y^2\left(y-x\right)=5\)

\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)=5\)

\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)=5\)

TH1\(\hept{\begin{cases}x-y=1\\x^2-y^2=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=2\end{cases}\left(N\right)}}\)

TH2\(\hept{\begin{cases}x-y=5\\x^2-y^2=1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)

TH3\(\hept{\begin{cases}x-y=-1\\x^2-y^2=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}\left(N\right)}}\)

TH4\(\hept{\begin{cases}x-y=-5\\x^2-y^2=-1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)

Vậy......

10 tháng 8 2020

pt <=> \(x^2\left(y^2-1\right)+x\left(-y\right)-2y^2=0\)

Xét: \(\Delta=y^2-4\left(y^2-1\right).-2y^2=y^2+8y^2\left(y^2-1\right)\)

\(\Delta=8y^4-7y^2\)

Do để pt có nghiệm => \(\Delta\)là 1 SCP

=> \(8y^4-7y^2\)là 1 SCP

=> \(8z^2-7z\)là 1 SCP vs \(z=y^2\)

Đến đây dễ dàng tìm ra z => Ra y => Ra x

6 tháng 1 2018

có lộn ko vậy

Đề bài sai rồi

6 tháng 1 2018

mình nhầm

\(x^2y^2-xy=x^2+2y^2\)

\(2y^2+x-2y+5=xy\)

\(\Leftrightarrow8y^2-4xy+4x-8y+20=0\)

\(\Leftrightarrow\left(4y^2-4xy+x^2\right)-\left(x^2-4x+4\right)+\left(4y^2-8y+4\right)=-20\)

\(\Leftrightarrow\left(2y-x\right)^2-\left(x-2\right)^2+\left(2y-2\right)^2=-20\)

bn tự giải tiếp

9 tháng 1 2020

Làm tiếp bài bạn ɱ√ρ︵ƤUɮĞツ『ღƤℓαէїŋʉɱ ₣їɾεツ』⁀ᶜᵘᵗᵉ

\(\left(2y-x\right)^2-\left(x-2\right)^2+\left(2y-2\right)^2=-20\)

\(\Leftrightarrow\left(2y-2x-2\right)\left(2y-2\right)+\left(2y-2\right)^2=-20\)

\(\Leftrightarrow\left(2y-2\right)\left(2y-2x-2+2y-2\right)=-20\)

\(\Leftrightarrow2\left(y-1\right)\left(4y-2x-4\right)=-20\)

\(\Leftrightarrow\left(y-1\right)\left(2y-x-2\right)=-5\)

Đến đây đơn giản rồi