K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2021

    \(x^3-y^3-2y^2-3y-1=0\)

\(<=>x^3=y^3+2y^2+3y+1\)\(y^3+3y^2+3y+1=(y+1)^3\)(vì \(y^2\)≥0) (1)

Ta có:\(x^3=y^3+2y^2+3y+1>y^3-3y^2+3y-1\)\(=(y-1)^3\) (2)

Từ (1) và (2) 

\(=>(y-1)^3< y^3+2y^2+3y+1=x^3 =<(y+1)^3\)

\(=>y^3+2y^2+3y+1=y^3,(y+1)^3\)

Xong giải ra thôi

16 tháng 11 2021

Rất xin lỗi bạn vì đến năm 2021 bn ms nhận được câu trả lời

16 tháng 11 2021

bạn làm giống như tìm x để nó là số cp thôi

 

 

16 tháng 11 2021

Đặt A=\(1+x+x^2+x^3+x^4\)

=>4A=\(4x^4+4x^3+4x^2+4x+4\)

    4A=\((4x^4+4x^3+x^2)+(x^2+4x+4)+2x^2\)\(=(2x^2+x)^2+(x+2)^2+2x^2>(2x^2+x)^2\) (1)

Lại có:

4A=\((4x^4+x^2+2^2+4x^3+4x+8x^2)-5x^2\)

4A=\((2x^2+x+2)^2-5x^2\)\(<(2x^2+x+2)^2\)(2)

Vì A là số chính phương

=>4A cũng là số chính phương

Từ (1) và (2)

=>4A=\((2x^2+x+1)^2\)

Mà 4A=4\((1+x+x^2+x^3+x^4)\)

=>\((2x^2+x+1)^2=4(1+x+x^2+x^3+x^4)\)

Từ đây giải phương trình ra thôi

16 tháng 11 2021

sao tôi toàn gặp 2015 thế nhỉ

16 tháng 11 2021

Cái này bộ ba pytago nên bạn chỉ cần cm x=2 là đc

17 tháng 4 2016

2*(2xy + x + y) = 2*83
=> 4xy + 2x + 2y = 166
=> 2x(2y + 1) + 2y +1 = 167 (cộng 2 vế với 1)
=> (2x + 1)(2y + 1) = 167
=> (2x + 1), (2y + 1) thuộc Ư(167) (vì x, y thuộc Z)
=> (2x + 1), (2y + 1) thuộc (1, -1, 167, -167)

kẻ bảng ra

28 tháng 10 2015

ai tích cho mình mình tích lại cho!

16 tháng 11 2021

\( 2x^2+4x=19-3y^2\)

<=>\(2(x^2+2x)=19-3y^2\)

\(<=> x^2+2x=19-3y^2/2\)

Vì x^2+2x thuộc Z

\(=>19-3y^2/2\) thuộc Z

Ta có:

\(19-3y^2/2=(21-3y^2-2)/2=3(7-y^2)/2 -1\)

Vì (3,2)=1

\(=>7-y^2 \) chia hết cho 2

Đặt \(7-y^2=2t\)(t thuộc Z)

\(=>y^2=7-2t\) (1)

Lại có:

\(x^2+2x=19-3y^2/2=3(7-y^2)/2 -1\)

\(<=>(x+1)^2=3(7-y^2)/2 >=0\)

 \(=>y^2≤ 7\) 

\(=>7-2t≤7\)

\(=>t>=0\)(2)

Từ (1),ta có:

\(7-2t>=0\)

\(<=>t≤7/2\)(3)

Từ (2) và (3)

\(=>t=0,1,2,3\)

Thay vào (1) sẽ tìm được y và từ đó tìm đc x thôi

 

27 tháng 2 2019

a) Thay \(x=1\)vào pt ta được :

\(1+k-4-4=0\)

\(\Leftrightarrow k-7=0\)

\(\Leftrightarrow k=7\)

b) Thay \(k=7\)vào pt ta được :

\(x^3+7x^2-4x-4=0\)

\(\Leftrightarrow\left(x^3-x^2\right)+\left(8x^2-8x\right)+\left(4x-4\right)=0\)

\(\Leftrightarrow x^2\left(x-1\right)+8x\left(x-1\right)+4\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+8x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+8x+4=0\end{cases}}\)

\(x-1=0\Leftrightarrow x=1\)

\(x^2+8x+4=0\)

Ta có :  \(\Delta=8^2-4\times4=48>0\)

\(\Rightarrow\)pt có 2 nghiệm : \(\orbr{\begin{cases}x_1=\frac{-8-\sqrt{48}}{2}=-4-2\sqrt{3}\\x_2=\frac{-8+\sqrt{48}}{2}=-4+2\sqrt{3}\end{cases}}\)

Vậy ...

16 tháng 11 2021

Tuy đã 5 năm rồi nhưng tôi vẵn làm vậy :)

16 tháng 11 2021

cái này phải vận dụng cái giả thiết cho là nghiệm nguyên dương

 

28 tháng 2 2017

Thay x=1 vào phương trình ta có:

\(\left(1-3a+1\right)\left(3+2a-5\right)=0\)

\(\Leftrightarrow\left(-3a+2\right)\left(2a-2\right)=0\)

\(\Leftrightarrow\left[\begin{matrix}-3a+2=0\\2a-2=0\end{matrix}\right.\left[\begin{matrix}a=\dfrac{2}{3}\\a=1\end{matrix}\right.\)

TH1: \(a=\dfrac{2}{3}\)

\(\Rightarrow\left(x-3.\dfrac{2}{3}+1\right)\left(3x+2.\dfrac{2}{3}-5\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3x-\dfrac{11}{3}\right)=0\Leftrightarrow\left[\begin{matrix}x-1=0\\3x-\dfrac{11}{3}=0\end{matrix}\right.\left[\begin{matrix}x=1\\x=\dfrac{11}{9}\end{matrix}\right.\)

TH2:a=1

\(\Leftrightarrow\left(x-3+1\right)\left(3x+2-5\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(3x-3\right)=0\Leftrightarrow\left[\begin{matrix}x=2\\x=1\end{matrix}\right.\)

28 tháng 2 2017

ha ha kiểm tra 45' của tôi nek

30 tháng 6 2017

5/7 và 53 /7