K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2016

x2 - 12y2 + xy - x + 3y + 5 = 0

<=> (x2 - 9y2) + (- 3y2 + xy) + (3y - x) = - 5

<=> (x - 3y)(x + 3y) + y(x - 3y) - (x - 3y) = - 5

<=> (x - 3y)(x + 3y + y - 1) = - 5

<=> (x - 3y)(x + 4y - 1) = - 5

<=> (x - 3y, x + 4y - 1) = (- 1, 5; 5, - 1; 1, - 5; - 5, 1)

Giải ra tìm được (x, y) = (2, 1; - 2, 1)

15 tháng 10 2016

\(x^2-12y^2+xy-x+3y+5=0\)

\(\Leftrightarrow x^2+x\left(y-1\right)+\left(3y-12y^2+5\right)=0\)

Xét \(\Delta=\left(y-1\right)^2-4.1.\left(3y-12y^2+5\right)=49y^2-14y-19=\left(7y-1\right)^2-20\ge0\)

Để x nhận giá trị nguyên thì \(\Delta\) là số chính phương.

Suy ra \(\left(7y-1\right)^2-20=k^2\Leftrightarrow\left(7y-k-1\right)\left(7y+k+1\right)=20\)

Xét các trường hợp được y = 1 thỏa mãn.

Khi đó ta suy ra \(x=2\) hoặc \(x=-2\)

Vậy (x;y) = (-2;1) ; (2;1)

28 tháng 8 2019

bằng 0 

13 tháng 11 2016

xy - 2x - 3y + 1 = 0

<=> x(y - 2) = 3y - 1

<=> \(=\frac{3y-1}{y-2}=3+\frac{5}{y-2}\)

Để x nguyên thì (y - 2) phải là ước của 5 hay

(y - 2) = (1, 5, - 1, - 5)

Giải tiếp sẽ ra

4 tháng 5 2018

\(PT\Leftrightarrow\left(x+y\right)\left(x+3y\right)-2\left(x+y\right)-5=0\)

\(\Leftrightarrow\left(x+y\right)\left(x+3y-2\right)=5\)

=> phương trình ước số

3 tháng 1 2020

a) xy2 + 2xy - 243y + x = 0

\(\Leftrightarrow\)x ( y + 1 )2 = 243y

Mà ( y ; y + 1 ) = 1 nên 243 \(⋮\)( y + 1 )2

Mặt khác ( y + 1 ) 2 là số chính phương nên ( y + 1 )2 \(\in\){ 32 ; 92 }

+) ( y + 1 )2 = 32 \(\Rightarrow\orbr{\begin{cases}y+1=3\\y+1=-3\end{cases}\Rightarrow\orbr{\begin{cases}y=2\Rightarrow x=54\\y=-4\Rightarrow x=-108\end{cases}}}\)

+) ( y + 1 )2 = 92 \(\Rightarrow\orbr{\begin{cases}y+1=9\\y+1=-9\end{cases}\Rightarrow\orbr{\begin{cases}y=8\Rightarrow x=24\\y=-10\Rightarrow x=-30\end{cases}}}\)

vậy ...

b) \(\sqrt{x^2+12}+5=3x+\sqrt{x^2+5}\)( đk : x > 0 )

\(\Leftrightarrow\sqrt{x^2+12}-4=3x+\sqrt{x^2+5}-9\)

\(\Leftrightarrow\sqrt{x^2+12}-4=3x-6+\sqrt{x^2+5}-3\)

\(\Leftrightarrow\frac{x^2-4}{\sqrt{x^2+12}+4}=3\left(x-2\right)+\frac{x^2-4}{\sqrt{x^2+5}+3}\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{x+2}{\sqrt{x^2+12}+4}-\frac{x+2}{\sqrt{x^2+5}+3}-3\right)=0\)

Vì \(\sqrt{x^2+12}+4>\sqrt{x^2+5}+3\Rightarrow\frac{x+2}{\sqrt{x^2+12}+4}< \frac{x+2}{\sqrt{x^2+5}+3}\)

Do đó : \(\frac{x+2}{\sqrt{x^2+12}+4}-\frac{x+2}{\sqrt{x^2+5}+3}-3< 0\)nên x - 2 = 0 \(\Leftrightarrow\)x = 2 

6 tháng 3 2020

\(\Delta\)không thì dùng cách này cho dễ

\(x^2+3y^2+2xy-18\left(x+y\right)+73=0\)

\(\Leftrightarrow\left(x+y\right)^2-18\left(x+y\right)+81+2y^2=8\)

\(\Leftrightarrow\left(x+y-9\right)^2+2y^2=8\)

\(\Rightarrow2y^2\le8\Rightarrow y^2\le4\Rightarrow-2\le y\le2\)

\(\Rightarrow y\in\left\{\pm1;\pm2;0\right\}\)( do y nguyên )

+) y = 0 \(\Rightarrow\left(x+y-9\right)^2=8\)( loại )

+) y = \(\pm1\)\(\Rightarrow\left(x+y-9\right)^2=6\)( loại )

+) y = \(\pm2\)\(\Rightarrow\left(x+y-9\right)^2=0\Rightarrow x=9-y\Rightarrow\orbr{\begin{cases}x=7\\x=11\end{cases}}\)

Vậy ( x ; y ) \(\in\){ ( 7 ; 2 ) ; ( 11 ; -2 ) }

15 tháng 1 2019

Bài toán :

x^2 + 2*x*y + 2*y^2 + 3*y-4 = 0

Lời giải:

  1. Tập xác định của phương trình

  2. Rút gọn thừa số chung

  3. Giải phương trình

  4. Nghiệm được xác định dưới dạng hàm ẩn

#

15 tháng 1 2019

Bn có thể có lời giải cụ thể cho bài này ko?