Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chac lam the nay a, x-3y=5
=>x=5+3y
=>y=x-5/3
vậy nghiêm nguyên của pt la x;y = 5+3y ; y=x-5 /3 voi x,y thuoc Z b,c tuong tu
ta có vt = (x - y)2 + ( x + x )2 +z2 = 12
ta có chính phương <= 12 là các số 1,4,9 ta tháy bộ 3 số chính phương cọng lại bằng 12 chỉ co ( 4 , 4 ,4 ) vậy ta có hệ
( x - y )2 = z2 =4
pần còn lại bạn tự giải nha
\(x^2+2x=y^2+2y+7\)
\(\Leftrightarrow\left(x^2+2x+1\right)-\left(y^2+2y+1\right)=7\)
\(\Leftrightarrow\left(x+1\right)^2-\left(y+1\right)^2=7\)
\(\Leftrightarrow\left(x-y\right)\left(x+y+2\right)=7\)
Đến đây bạn lập bảng ước của 7 rồi tự làm nha
x^2-y^2-2x+2y
=(x^2-y^2)-(2X-2Y)
=(x+y)(x-y)-2(x-y)
=(x-y)(x+y-2)
\(a)\)
\(x^2=2y^2-8y+3\)
\(\rightarrow x^2=2\left(y^2+4y+4\right)-5\)
\(\rightarrow x^2+5=2\left(y+2\right)^2\)
\(\text{Ta có:}\)\(2\left(y+2\right)⋮2\)
\(\rightarrow\text{Một số chính phương chia 5 có số dư là: 0; 1; 4}\)
\(\rightarrow2n^2⋮5\)\(\text{có số dư là: 0; 2; 3 }\)
\(\text{Ta có:}x^2+5⋮5\left(dư5\right)\)
\(\rightarrow\text{Phương trình không có nghiệm nguyên}\)
\(b)\)
\(x^5-5x^3+4x=24\left(5y+1\right)\)
\(\rightarrow x\left(x+1\right)\left(x-1\right)\left(x+2\right)\left(x-2\right)=120y+24\)
\(\text{VT là tích của 5 số nguyện liên tiếp}⋮5\)
\(\text{VP không chia hết cho 5}\)
\(\rightarrow\text{Phương trình không có nghiệm nguyên }\)