Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này thêm điều kiện là: x,y thuộc Z nha ko là ko lm đc đâu
a, (x+5)(y-3)=15
x+5 | -15 | -5 | -3 | -1 | 1 | 3 | 5 | 15 |
y-3 | -1 | -3 | -5 | -15 | 15 | 5 | 3 | 1 |
x | -20 | -10 | -8 | -6 | -4 | -2 | 0 | 10 |
y | 2 | 0 | -2 | -12 | 18 | 8 | 6 | 4 |
Vậy có 8 cặp(x;y):...
các ý còn lại tương tự
Bài giải
Mình làm câu a các câu b , d bạn làm tương tự nha !
a, \(\left(x+5\right)\left(y-3\right)=15\)
\(\Rightarrow\text{ }x+5\text{ , }y-3\inƯ\left(15\right)\)
x + 5 | - 1 | 1 | - 3 | 3 | - 5 | 5 | - 15 | 15 |
y - 3 | - 15 | 15 | - 5 | 5 | - 3 | 3 | - 1 | 1 |
x | - 6 | - 4 | - 8 | - 2 | - 10 | 0 | - 20 | 10 |
y | - 12 | 18 | - 2 | 8 | 0 | 6 | - 2 | 4 |
Vậy các cặp \(\left(x,y\right)=\text{ }...\)
c, \(xy+y+x=30\)
\(y\left(x+1\right)+x=30\)
\(y\left(x+1\right)+\left(x+1\right)=31\)
\(\left(y+1\right)\left(x+1\right)=31\)
Đến đây làm tương tự câu a nha !
Câu e để mình nghĩ tí đã nha !
Câu 1: Cặp số là nghiệm phương của 2x + 3y = 7 là:
C. ( 2;1 )
Câu 2: Phương trình x + 2y = 3, Cặp số là nghiệm phương của phương trình đã cho là cặp số : ( 1;1)
1.
$3xy+x-y=1$
$\Rightarrow x(3y+1)-y=1$
$\Rightarrow 3x(3y+1)-3y=3$
$\Rightarrow 3x(3y+1)-(3y+1)=2$
$\Rightarrow (3y+1)(3x-1)=2$
Do $x,y$ là số nguyên nên $3x-1, 3y+1$ là số nguyên. Mà tích của chúng bằng 2 nên ta có các TH sau:
TH1: $3x-1=1, 3y+1=2\Rightarrow x=\frac{2}{3}$ (loại)
TH2: $3x-1=-1, 3y+1=-2\Rightarrow x=0; y=-1$
TH3: $3x-1=2, 3y+1=1\Rightarrow x=1; y=0$
TH4: $3x-1=-2, 3y+1=-1\Rightarrow x=\frac{-1}{3}$ (loại)
2.
$2x^2+3xy-2y^2=7$
$\Rightarrow (x+2y)(2x-y)=7$
Ta xét các TH sau:
TH1: $x+2y=1, 2x-y=7$
$\Rightarrow 2(x+2y)-(2x-y)=2-7=-5$
$\Leftrightarrow 5y=-5\Leftrightarrow y=-1$.
$x=1-2y=1-2(-1)=1+2=3$
TH2: $x+2y=-1, 2x-y=-7$
$\Rightarrow x=-3; y=1$
TH3: $x+2y=7, 2x-y=1$
$\Rightarrow x=\frac{9}{5}$ (loại)
TH4: $x+2y=-7, 2x-y=-1$
$\Rightarrow x=\frac{-9}{5}$ (loại)
Vậy.............