Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)M(x)=-x4+(2x3-4x3)+(4x2-4x2)-2x-5
=-x4-2x3-2x-5
Bậc của đa thức:4
Hệ số cao nhất:-1
Hệ số tự do:-5
N(x)=(-x4+2x4)+2x3-x2+3x+5
=x4+2x3-x2+3x+5
Bậc của đa thức:4
Hệ số cao nhất:1
Hệ số tự do:5
b)Thay x=-1 vào N(x) ta có:
(-1)4+2.(-1)3-(-1)2+3.(-1)+5
=1-2-1-3+5
=0
c)P(x)-M(x)=N(x)
=>P(x)=N(x)+M(x)=(x4+2x3-x2+3x+5)+(-x4-2x3-2x-5)
=(x4-x4)+(2x3-2x3)-x2+(3x-2x)+(5-5)
=-x2+x
d)P(x)=-x2+x=-x(x-1)
Cho P(x)=0=>-x(x-1)=0
<=>-x=0 hoặc x-1=0
<=>x=0 hoặc x=1
Vậy...
1. S = { 3;4 }
2. S={ -2; 1}
3. S={\(\frac{1}{2}\) ; 2;-2}
4.S={\(\frac{4}{3}\) ;2}
S la tap ngo nhek , xin k nao
Bài 1:
Đặt \(h_{\left(x\right)}=0\)
\(\Leftrightarrow x^2-5x+5=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\frac{5}{2}+\frac{25}{4}-\frac{5}{4}=0\)
\(\Leftrightarrow\left(x-\frac{5}{2}\right)^2=\frac{5}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{5}{2}=\frac{\sqrt{5}}{2}\\x-\frac{5}{2}=-\frac{\sqrt{5}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\sqrt{5}+5}{2}\\x=\frac{-\sqrt{5}+5}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{\frac{5+\sqrt{5}}{2};\frac{5-\sqrt{5}}{2}\right\}\)
Bài 2:
a) Đặt \(f_{\left(x\right)}=0\)
\(\Leftrightarrow x-2=0\)
hay x=2
Vậy: S={2}
b) Đặt \(g_{\left(x\right)}=0\)
\(\Leftrightarrow x^3-4x=0\)
\(\Leftrightarrow x\left(x^2-4\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
Vậy: S={0;2;-2}
c) Đặt \(h_{\left(x\right)}=0\)
\(\Leftrightarrow x^3+8=0\)
\(\Leftrightarrow x^3=-8\)
hay x=-2
Vậy: S={-2}
d) Đặt \(p_{\left(x\right)}=0\)
\(\Leftrightarrow x^3+x^2+x+1=0\)
\(\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow x+1=0\)(vì \(x^2+1>0\forall x\))
hay x=-1
Vậy: S={-1}
tìm no của đa thức f(x)=x3+ax2+bx+c. Biết rằng đa thức có no và a+2b+4c=−12
no là nghiệm đấy
nghiệm là j =))
Thay x=-1 vào đa thức f(x) có:
\(f\left(-1\right)=-1+a-b-2=0\Leftrightarrow a-b=3\)\(\Leftrightarrow a=3+b\)(1)
Thay x=1 vào đa thức f(x) có:
\(f\left(-1\right)=1+a+b-2=0\Leftrightarrow a+b=1\)(2)
Thay (1) vào (2) ta có:
\(3+b+b=1\)
\(\Leftrightarrow2b=-2\)
\(\Leftrightarrow b=-1\)
\(\Leftrightarrow a=2\)
KL:................
a, thu gọn và sắp sếp là : x4+2x2+1
b, M(1)=thay vào biểu thức có:
14+2.12 +1=1+2+1=4
M(-1):tương tự
c, có: x4 .>/ 0 vs mọi x
=>x4+2x2>/0 vs mọi x
=>x4+2x2+1 >/0 vs mọi x
=> M ko có no
a) Đặt \(f_{\left(x\right)}=0\)
\(\Leftrightarrow x^3+3x^2-2x-2=0\)
\(\Leftrightarrow x^3-x^2+4x^2-4x+2x-2=0\)
\(\Leftrightarrow x^2\left(x-1\right)+4x\left(x-1\right)+2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+4x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x^2+4x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2+4x+4-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(x+2\right)^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x+2=\sqrt{2}\\x+2=-\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{2}-2\\x=-\sqrt{2}-2\end{matrix}\right.\)
Vậy: \(S=\left\{1;\sqrt{2}-2;-\sqrt{2}-2\right\}\)
b) Đặt \(G_{\left(x\right)}=0\)
\(\Leftrightarrow3x+1=0\)
\(\Leftrightarrow3x=-1\)
hay \(x=\frac{-1}{3}\)
Vậy: \(S=\left\{-\frac{1}{3}\right\}\)
c) Đặt \(A_{\left(x\right)}=0\)
\(\Leftrightarrow2x^2-4=0\)
\(\Leftrightarrow2x^2=4\)
\(\Leftrightarrow x^2=2\)
\(\Leftrightarrow x=\pm\sqrt{2}\)
Vậy: \(S=\left\{\sqrt{2};-\sqrt{2}\right\}\)
d) Đặt \(h_{\left(x\right)}=0\)
\(\Leftrightarrow2x^2+3x-5=0\)
\(\Leftrightarrow2x^2+5x-2x-5=0\)
\(\Leftrightarrow x\left(2x+5\right)-\left(2x+5\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+5=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-5\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-5}{2}\\x=1\end{matrix}\right.\)
Vậy: \(S=\left\{\frac{-5}{2};1\right\}\)
e) Đặt P=0
\(\Leftrightarrow3x^2+4x^2+6x+3=0\)
\(\Leftrightarrow7x^2+6x+3=0\)
\(\Leftrightarrow7\left(x^2+\frac{6}{7}x+\frac{3}{7}\right)=0\)
mà 7>0
nên \(x^2+\frac{6}{7}x+\frac{3}{7}=0\)
\(\Leftrightarrow x^2+2\cdot x\cdot\frac{6}{14}+\frac{9}{49}+\frac{12}{49}=0\)
\(\Leftrightarrow\left(x+\frac{3}{7}\right)^2=-\frac{12}{49}\)(vô lý)
Vậy: S=∅
deo biet