Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sao dùng đc! nhg thui tui giải đc bài này rùi! cảm ơn bn đã nhắc! :))
\(\left(x,y\right)\rightarrow\left(a,b\right)\)
\(+,a=0\Rightarrow b^2=b\Leftrightarrow a^2=a\Rightarrow\left[{}\begin{matrix}a=0\\a=1\end{matrix}\right.\)
\(tt:b=0\Rightarrow\left[{}\begin{matrix}a=1\\a=0\end{matrix}\right.\)
\(+,a;b\ne0\Rightarrow a^2\ge a;b^2\ge b\left("="\Leftrightarrow a=1;b=1\right)ma:a^2+b^2=a+b\Rightarrow a=b=1\)
vậy:..
a strange way to solve...
1) \(x^2+y^2=x+y\)
\(\Leftrightarrow x^2-x+y^2-y=0\)
Coi phương trình trên là pt bậc 2 với ẩn là x.
+) Xét \(x=0\Leftrightarrow y=0\)( thỏa )
+) Xét \(x\ne0\)
Để pt có nghiệm thì \(\Delta\ge0\)
\(\Leftrightarrow1^2-4\left(y^2-y\right)\ge0\)
\(\Leftrightarrow1-4y^2+4y\ge0\)
\(\Leftrightarrow4y^2-4y-1\le0\)
\(\Leftrightarrow\left(2y-1\right)^2\le2\)
\(\Leftrightarrow0\le\left(2y-1\right)^2\le2\)
Vì y nguyên nên \(2y-1\) nguyên
Do đó \(\left(2y-1\right)^2\in\left\{0;1\right\}\)
\(\Leftrightarrow2y-1\in\left\{0;1\right\}\)
\(\Leftrightarrow\left[{}\begin{matrix}y=\frac{1}{2}\left(loai\right)\\y=1\left(thoa\right)\end{matrix}\right.\)
Khi \(y=1\) ta có \(pt\Leftrightarrow x^2+1=x+1\)
\(\Leftrightarrow x^2-x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loai\right)\\x=1\left(chon\right)\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left\{\left(0;0\right);\left(1;1\right);\left(0;1\right);\left(1;0\right)\right\}\)
Hết nghiệm chưa ?
đk: \(-\sqrt{5}\le x\le\sqrt{5}\)
*) Ta có: \(M^2=\left(2x+\sqrt{5-x^2}\right)^2\le\left(2^2+1^2\right)\left(x^2+5-x^2\right)=25\Rightarrow M^2\le25\Rightarrow-5\le M\le5\)
Nếu M=5 thì \(M^2=25\)
Dấu '=' xảy ra khi và chỉ khi \(\frac{x}{2}=\sqrt{5-x^2}\)và \(x^2\le5\Leftrightarrow x=2\)
Vậy Max M=5 khi x=2
*) Theo trên thì \(-5\le M\le5\)nhưng GTNN của M không bằng -5 vì \(-\sqrt{5}\le x\le\sqrt{5}\Rightarrow M\ge-2\sqrt{5}\)
Vậy Min M = \(-2\sqrt{5}\)khi \(x=-\sqrt{5}\)
ĐK: \(-\sqrt{5}\le x\le\sqrt{5}\)
Ta có \(M^2=\left(2x+\sqrt{5-x^2}\right)\le\left(2^2+1\right)\left(x^2+5-x^2\right)=25\)
\(\Rightarrow M\le25\Rightarrow-5\le M\le5\)
Nếu M=5 thì M2=25 dấu BĐT xảy ra \(\Leftrightarrow\frac{x}{2}=\sqrt{5-x^2}\)và \(x^2\le5\Leftrightarrow x=2\)
vậy maxM=5 khi x=2
Theo trên thì -5 \(\le M\le5\)nhưng giá trị nhỏ nhất của M không bằng -5 vì \(-\sqrt{5}\le x\le\sqrt{5}\)=> M\(\ge-2\sqrt{5}\)
Vậy minM=\(-2\sqrt{5}\)khi x\(=-\sqrt{5}\)
\(x^2+3x+m-3=0\)
Ta có \(\Delta=b^2-4ac\)
\(=3^2-4.1.\left(m-3\right)\)
\(=9-4m+12\)
\(=21-4m\)
Đẻ pt có 2 nghiệm \(x_1;x_2\)\(\Leftrightarrow\Delta\ge0\Leftrightarrow21-4m\ge0\)
\(\Leftrightarrow x\le\frac{21}{4}\)
Áp dụng vi-ét ta có
\(\hept{\begin{cases}x_1+x_2=-3\\x_1.x_2=m-3\end{cases}}\)
Ta có \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=5\Leftrightarrow\frac{x_1^2+x_2^2}{x_1.x_2}=5\)
\(\Leftrightarrow x_1^2+x_2^2=5x_1x_2\)
\(\Leftrightarrow x_1^2+x_2^2-5x_1.x_2=0\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-5x_1x_2=0\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-7x_1x_2=0\)
\(\Leftrightarrow\left(-3\right)^2-7\left(m-3\right)=0\)
\(\Leftrightarrow9-7m+21=0\)
\(\Leftrightarrow30-7m=0\)
\(\Leftrightarrow7m=30\)
\(\Leftrightarrow m=\frac{30}{7}\) (TM)
Vậy \(m=\frac{30}{7}\) thì thỏa mãn bài toán
x2+2y2+2xy-y=3(y-1)
<=> x2+2xy+y2+y2-y=3(y-1)
<=> (x+y)2=3(y-1)-y(y-1)
<=> (x+y)2=(y-1)(3-y)
Nhận thấy, Vế trái (x+y)2 \(\ge\)0 Với mọi x,y
=> Để phương trình có nghiệm thì Vế phải \(\ge\)0
<=> (y-1)(3-y)\(\ge\)0 <=> 1\(\le\)y\(\le\)3
Y nguyên => y1=1; y2=2; y3=3
+/ y=1 => x=-y=-1
+/ y=2 => x=-1
+/ y=3 => x=-y=-3
Các cặp (x,y) nguyên là: (-1,1); (-1; 2); (-3,3)
Bài 1 : dùng ĐK chặn x;y
Bài 2: pt trùng phương đặt x8 = y rồi dùng Vi-ét cho pt 1 rồi Vi-ét cho pt 2
Bài 3: rút x;y theo m rồi quy P về pt chỉ có ẩn m -> tổng bình phương cộng vs 1 hằng số
Bài 4: Đi ngủ .VV
Cách chặn x ; y của a khó quá :( nghĩ mãi ko ra , đành làm cách khác
\(1,ĐKXĐ:x\ge-y\)
Từ hệ \(\Rightarrow\hept{\begin{cases}\sqrt{x^2+x+2}=y+\sqrt{x+y}\\x+1=y+\sqrt{x+y}\end{cases}}\)
\(\Rightarrow\sqrt{x^2+x+2}=x+1\)
\(\Leftrightarrow\hept{\begin{cases}x\ge-1\\x^2+x+2=x^2+2x+1\end{cases}}\)
\(\Leftrightarrow x=1\)
Thế vào hệ có \(\sqrt{y+1}=2-y\)
\(\Leftrightarrow\hept{\begin{cases}-1\le y\le2\\y+1=y^2-4y+4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-1\le y\le2\\y^2-5y+3=0\end{cases}}\)
\(\Leftrightarrow y=\frac{5-\sqrt{13}}{2}\)
Vậy hệ có nghiệm \(\hept{\begin{cases}x=1\\y=\frac{5-\sqrt{13}}{2}\end{cases}}\)
\(\Leftrightarrow x^2-y^2=16\)
\(\Leftrightarrow\left(x-y\right)\cdot\left(x+y\right)=16\)
XONG LẬP BẢNG LÀ RA
nghiệm nguyên bn ạ! giải giúp tớ vs!