Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(h\left(x\right)=x^3+4x-3\left(x^2+4\right)\)
\(\Rightarrow h\left(x\right)=x^3+4x-3x^2-12\)
\(\Rightarrow h\left(x\right)=x^3-3x^2+4x-12\)
\(\Rightarrow h\left(x\right)=x^2\left(x-3\right)+4\left(x-3\right)=\left(x^2+4\right)\left(x-3\right)\)
h(x) có nghiệm <=> h(x)=0 <=> \(\left(x^2+4\right)\left(x-3\right)=0\Leftrightarrow\int^{x^2+4=0}_{x-3=0}\)
Vì \(x^2\ge0\Rightarrow x^2+4\ge0+4>0\) (với mọi x \(\in\) R)=>x2+4 vô nghiệm
=>x-3=0=>x=3
Vậy............................
a) Đặt f(x) =\(\left(2x^2-9\right)\left(-x^2+1\right)\)
Ta có: \(f\left(x\right)=0\Leftrightarrow\left(2x^2-9\right)\left(-x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x^2-9=0\\-x^2+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x^2=9\\-x^2=-1\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=\frac{9}{2}\\x^2=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\pm\sqrt{\frac{9}{2}}\\x=\pm1\end{cases}}}\)
Vậy \(x\in\left\{\pm\sqrt{\frac{9}{2}};\pm1\right\}\)là nghiệm của đa thức f(x)
Trả lời:
Tìm nghiệm của các đa thức sau
D(x)=x3+3x4+ x +2
\(\Rightarrow\) D ( x ) = 3x4 − 2 .x3 = 0
\(\Rightarrow\)D(x)=3x4−2x=0 ⇔ 2 .x3 = 3
\(\Leftrightarrow\)2.x3=3
\(\Leftrightarrow\) x3 = \(\frac{3}{2}\)
~Học tốt!~
\(\left|x+1\right|,\left|x-2\right|,\left|x+3\right|\ge0\)
\(6\ge0\Rightarrow x\ge0\)
\(\left|x+1\right|+\left|x-2\right|+\left|x+3\right|=6\)
\(\Rightarrow\left(x+1\right)+\left(x-2\right)+\left(x+3\right)=6\)
\(\Rightarrow\left(x+x+x\right)+\left(1-2+3\right)=6\)
\(\Rightarrow3x+2=6\)
\(\Rightarrow3x=6-2\)
\(\Rightarrow3x=4\)
\(\Rightarrow x=\frac{4}{3}\)
Bài 7:
Cho x+5=0
=> x=-5
Cho x2-2x=0
=> x2-2x+1-1=0
=>(x-1)2-1=0
=>(x-1)2=1
=>x-1=1 thì x=2
Nếu x-1=-1 thì x=1
TK MK NHA . CHÚC BẠN HỌC GIỎI
ĐÚNG 100% NHA
Ta có :
\(P\left(x\right)=11-2x^3+4x^4+5x-x^4-2x\)
\(\Rightarrow P\left(x\right)=\left(4x^4-x^4\right)-2x^3+\left(5x-2x\right)+11\)
\(\Rightarrow P\left(x\right)=3x^4-2x^3+3x+11\)
\(Q\left(x\right)=2x^4-x+4-x^3+3x-5x^4+3x^3\)
\(\Rightarrow Q\left(x\right)=\left(2x^4-5x^4\right)+\left(3x^3-x^3\right)+\left(3x-x\right)+4\)
\(\Rightarrow Q\left(x\right)=-3x^4+2x^3+2x+4\)
\(H\left(x\right)=P\left(x\right)+Q\left(x\right)\)
\(\Rightarrow H\left(x\right)=3x^4-2x^3+3x+11+-3x^4+2x^3+2x+4\)
\(\Rightarrow H\left(x\right)=5x+15\)
\(\Rightarrow H\left(x\right)=5\left(x+3\right)\)
Xét \(H\left(x\right)=0\)
\(\Rightarrow5\left(x+3\right)=0\)
\(\Rightarrow x+3=0\)
\(\Rightarrow x=-3\)
Vậy \(x=-3\)là nghiệm của đa thức \(H\left(x\right)\)
Ta có:
2x^3+3x=0
=>x(2x^2+3)
=>x=0 hoặc 2x^2+3=0
Xét 2x^2+3=0 có:
2x^2+3 = 0
<=>2x^2=-3
<=>x^2=-3/2
<=>x=\(\sqrt{-\frac{3}{2}}\)