Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x^2-3x-5=(x+1)(2x-5) => 2x^2-3x-5 co 2 nghiem x=-1 va x=5/2
x^3+4x^2+x-6=(x-1)(x+2)(x+3) =>x^3+4x^2+x-6 co 3 nghiemx=1;x=-2 va x=-3
36x^4+12x^3-17x^2-3x+2=(2x-1)^2(3x-1)(3x+2) => 36x^4+12x^3-17x^2-3x+2 co 3 nghiem x=1/2;x=1/3 va x=-2/3
a,\(2x^2-3x-5\)
=\(2\left(x^2-2x.\frac{3}{4}+\frac{9}{16}\right)-\frac{49}{8}\)
=\(2\left(x-\frac{3}{4}\right)^2-\frac{49}{8}\)
Để g(x) có nghiệm
=>\(2\left(x-\frac{3}{4}\right)^2-\frac{49}{8}\)=0
=>\(2\left(x-\frac{3}{4}\right)^2=\frac{49}{8}\)
=>\(\left(x-\frac{3}{4}\right)^2=\frac{49}{16}\)
=>x=-1 hoặc x=5/2
Vậy x=-1 hoặc x=5/2
a)Đang suy nghĩ...
b)\(M\left(x\right)=\left(x^2-3x\right)+\left(x-3\right)=0\)
\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
a) \(12x^{11}-15x^7-6x^5+2018\)
\(=3x^5.\left(4x^6-5x^2-2\right)+2018\)
\(=3x^5.0+2018\)
\(=2018\)
a) Ta có : 2x2 + 3x = 0
<=> x(2x + 3) = 0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{3}{2}\end{cases}}\)
1)
f(x) = 3x - 6 = 3x - 3.2 = 3(x - 2) => nghiệm của f(x) là 2.
h(x) = -5x + 30 = -5x + (-5) . (-6) = -5(x - 6) => nghiệm của h(x) là 6.
g(x) = (x - 3)(16 - 4x) => nghiệm của g(x) là 3 hoặc 4.
k(x) = x2 - 81 = x2 - 92 = (x + 9)(x - 9) => nghiệm của k(x) là -9 hoặc 9.
m(x) = x2 + 7x - 8 = x2 - x + 8x - 8 = x(x - 1) + 8(x - 1) = (x + 8)(x - 1) => nghiệm của m(x) là -8 hoặc 1.
n(x) = 5x2 + 9x + 4 = 5x2 + 5x + 4x + 4 = 5x(x + 1) + 4(x + 1) = (5x + 4)(x + 1) => nghiệm của n(x) là \(-\frac{4}{5}\)hoặc -1.
A(x) = 3x2 - 12x = 3x2 - 3x . 4 = 3x(x - 4) => nghiệm của đa thức là 0 hoặc 4.
2) x2 + 4x + 5 = x2 + 2x + 2x + 4 + 1 = x(x + 2) + 2(x + 2) + 1 = (x + 2)(x + 2) + 1 = (x + 2)2 + 1 \(\ne0\) (đpcm)
3x - 6 = 0
3x = 6
x = 6 : 3
x = 2
Vậy x = 2 là nghiệm của đa thức f(x)
-5x + 30 = 0
-5x = -30
x = -30 : (-5)
x = 6
Vậy x = 6 là nghiệm của đa thức trên
(x - 3)(16 - 4x) = 0
- x - 3 = 0
x = 3
- 16 - 4x = 0
4x = 16
x = 16 : 4
x = 4
Vậy x = 3 và x = 4 là nghiệm của đa thức trên
x^2 - 81 = 0
x^2 = 81
x^2 = \(\left(\pm9\right)^2\)
x = \(\pm9\)
Vậy x = 9 và x = -9 là nghiệm của đa thức trên
x^2 + 7x - 8 = 0
x^2 - x + 8x - 8 = 0
x(x - 1) + 8(x - 1) = 0
(x + 8)(x - 1) = 0
- x + 8 = 0
x = -8
- x - 1 = 0
x = 1
Vậy x = -8 và x = 1 là nghiệm của đa thức trên
5x^2 + 9x + 4 = 0
5x^2 + 5x + 4x + 4 = 0
5x(x + 1) + 4(x + 1) = 0
(5x + 4)(x + 1) = 0
- 5x + 4 = 0
5x = -4
x = -4/5
- x + 1 = 0
x = -1
Vậy x = -4/5 và x = -1 là nghiệ của đa thức trên
Chúc bạn học tốt
\(3x^3+3x=0\)
\(3x\left(x^2+1\right)=0\)
Vì x^2+1 > 1
Nên 3x=0
x=0
3x^3+3x=0
3x.x.x+3x=0
3x(x.x+1)=0
+) 3x=0
x=3:0
x=0
+) x.x+1=0
x^2+1=0
x^2=0-1
x^2=-1
x=+ 1
Vậy : x=0 hoặc + 1
a, cho f(x) = \(3^2\)-12X = 0
=> X=\(\frac{3^2-0}{12}=\frac{9}{12}=\frac{3}{4}\). Vậy X=\(\frac{3}{4}\)là nghiệm của đa thức.
b, đề chưa rõ k mình cái nha =)
a, f(x)=\(3^2\) -12x=0
=>9=12x
=>x=\(\frac{3}{4}\)
b,f(1)=a+b=-2 (1)
f(2)=2a+b=0 (2)
Từ (1) và (2)
=>f(2)-f(1)=2a+b-(a+b)=a=2=0-(-2)=2
a=2
=>a+b=0
=>b=-4
1)
f(x) = 3x - 6 = 3x - 3.2 = 3(x - 2) => nghiệm của f(x) là 2.
h(x) = -5x + 30 = -5x + (-5) . (-6) = -5(x - 6) => nghiệm của h(x) là 6.
g(x) = (x - 3)(16 - 4x) => nghiệm của g(x) là 3 hoặc 4.
k(x) = x2 - 81 = x2 - 92 = (x + 9)(x - 9) => nghiệm của k(x) là -9 hoặc 9.
m(x) = x2 + 7x - 8 = x2 - x + 8x - 8 = x(x - 1) + 8(x - 1) = (x + 8)(x - 1) => nghiệm của m(x) là -8 hoặc 1.
n(x) = 5x2 + 9x + 4 = 5x2 + 5x + 4x + 4 = 5x(x + 1) + 4(x + 1) = (5x + 4)(x + 1) => nghiệm của n(x) là \(-\frac{4}{5}\)hoặc -1.
A(x) = 3x2 - 12x = 3x2 - 3x . 4 = 3x(x - 4) => nghiệm của đa thức là 0 hoặc 4.
2) x2 + 4x + 5 = x2 + 2x + 2x + 4 + 1 = x(x + 2) + 2(x + 2) + 1 = (x + 2)(x + 2) + 1 = (x + 2)2 + 1 \(\ne0\) (đpcm)
\(3x^3-12x=0\)
\(\Rightarrow x\left(3x^2-12\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\3x^2-12=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\3x^2=12\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2=36\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\\x=-6\end{matrix}\right.\)