Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(f\left(x\right)-g\left(x\right)=\left[x\left(x^2-2x+7\right)-1\right]-\left[x\left(x^2-2x-1\right)-1\right]\)
\(f\left(x\right)-g\left(x\right)=x^3-2x^2+7x-1-x^3+2x^2+x+1\)
\(f\left(x\right)-g\left(x\right)=8x\)
\(f\left(x\right)+g\left(x\right)=x\left(x^2-2x+7\right)-1+x\left(x^2-2x-1\right)-1\)
\(f\left(x\right)+g\left(x\right)=x^3-2x^2+7x-1+x^3-2x^2-x-1\)
\(f\left(x\right)+g\left(x\right)=2x^3-4x^2+6x-2\)
b) 8x=0
=> x=0
=> Nghiệm đa thức f(x)-g(x)
c) Thay \(x=-\frac{3}{2}\)vào BT f(x)+g(x) ta được :
\(2.\left(-\frac{3}{2}\right)^3-4\left(-\frac{3}{2}\right)^2+6\left(-\frac{3}{2}\right)-2\)
\(=6,75+9-9-2\)
\(=4,75\)
#H
Câu 1: a) x = 1 là nghiệm của đa thức f(x)
b) x = -1 là nghiệm của đa thức g(x)
c) x = 1 là nghiệm của đa thức h(x)
Câu 2: Số 1 là ngiệm của đa thức f(x)
xét h(x) =0
<=> 5x+3=0
5x=-3
x=-3/5
vậy nghiệm của đa thức h(x) là x=-3/5
c) f(x)= 4x3 - x2 + 2x - 5
+Thay x= -1 vào ta được:
f(x)= 4.(-1)3 - (-1)2 + 2.(-1) - 5
f(x)= (-4) - 1 + (-2) - 5
f(x)= (-7) - 5= -12
Vậy x= -1 không phải là nghiệm của đa thức f(x).
Mình chỉ làm được câu c) thôi nhé, còn câu d) thì mình đang nghĩ cách làm.
Chúc bạn học tốt!
f(x)=\(9-x^5-7x^4-2x^3+x^2+4x\)
g(x)=\(x^5-7x^4+4x^3-3x-9\)
f(x)+g(x)=\(9-x^5-7x^4-2x^3+x^2+4x\)+\(x^5-7x^4+4x^3-3x-9\)
=(9-9)-(\(x^5-x^5\))\(-\left(7x^4+7x^4\right)-\left(2x^3-4x^3\right)+x^2\)+(\(\)\(4x-3x\))
=\(-14x^4+2x^3+x^2+x\)
a) Sắp xếp các đa thức theo lũy thừa giảm của biến :
\(f\left(x\right)=-x^5-7x^4-2x^3+x^2+4x+9\)
\(g\left(x\right)=x^5-7x^4+2x^3+2x^3-3x-9\)
b, \(h\left(x\right)=f\left(x\right)+g\left(x\right)\)
\(=\left(-x^5-7x^4-2x^3+x^2+4x+9\right)+\left(x^5-7x^4+2x^3+2x^3-3x-9\right)\)
=> h(x) = -14x4 + 2x3 + x2 +x
xét f(x)=0=> (x+1)(x-1)=0
=>__x+1=0=>x=-1
|__x-1=0=> x=1
vậy nghiêm của f(x) là ±1
xét f(x)=0 => (x+1)(x-1)=0
=> __x+1=0=> x=-1
|__x-1=0=> x=1
vậy nghiệm của f(x) là ±1
ta có: nghiệm của f(x) cũng là nghiệm của g(x) nên ±1 cũng là nghiêm của g(x)
g(-1)=\(\left(-1\right)^3+a\left(-1\right)^2+b\left(-1\right)+2=-1+a-b+2=1+a-b=0\)
g(1)=\(1^3+a.1^2+b.1+2=1+a+b+2=3+a+b=0\)
=>1+a-b=3+a+b
=>1-3-b-b=-a+a
=> -2-2b=0
=> -2b=2
=>b=2:(-2)=-1
thay b vào ta có:
\(g\left(1\right)=3+a+\left(-1\right)=0\)
=> 2+a=0
=> a=-2
Vậy a=-2 và b=-1
Bài 1:
a) \(f\left(x\right)=2x\left(x^2-3\right)-4\left(1-2x\right)+x^2\left(x-1\right)+\left(5x+3\right)\)
\(=2x^3-6x-4+8x+x^3-x^2+5x+3\)
\(=x^3-x^2+7x-1\)
\(g\left(x\right)=-3\left(1-x^2\right)-2\left(x^2-2x+1\right)\)
\(=-3+3x^2-2x^2+4x-2\)
\(=x^2+4x-5\)
b) \(h\left(x\right)=f\left(x\right)-g\left(x\right)\)
\(=x^3-x^2+7x-1-x^2-4x+5\)
\(=x^3-2x^2+3x-4\)
a: f(x)=0
=>x(2x-1)=0
=>x=0 hoặc x=1/2
b: g(x)=0
=>x^2-1=0
=>x^2=1
=>x=1 hoặc x=-1
c: h(x)=0
=>x^2-3=0
=>x^2=3
=>x=căn 3 hoặc x=-căn 3