Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$x^2\geq 0, \forall x\in\mathbb{R}$
$\Rightarrow Q(x)=x^2+\sqrt{3}\geq \sqrt{3}>0$ với mọi $x\in\mathbb{R}$
Do đó đa thức $Q(x)$ vô nghiệm.
a) \(Q=2x^2y+5x+7x^2y-3x-2017\)
\(Q=(2x^2y+7x^2y)+(5x-3x)-2017\)
\(Q=9x^2y+2x-2017\)
b)\(P(x)=2x^5+2x^3-x^2+4x^4-15+x\)
\(P(x)=2x^5+4x^4+2x^3-x^2+x-15\)
Hệ số cao nhất là : 2
Hệ số tự do là : -15
Bậc của đa thức là 5
1/ a/ Ta có:
\(P\left(2\right)=m.2^2+\left(2m+1\right).2-10=16\)
\(\Leftrightarrow m-3=0\)
\(\Leftrightarrow m=3\)
b/ Theo câu a thì
\(P\left(x\right)=3x^2+7x-10=0\)
\(\Leftrightarrow\left(3x^2-3x\right)+\left(10x-10\right)=0\)
\(\Leftrightarrow3x\left(x-1\right)+10\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x+10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{10}{3}\end{cases}}\)
2/ Tương tự a phân tích nhân tử hộ thôi nha
a/ \(1-5x=0\)
b/ \(x^2\left(x+2\right)=0\)
c/ \(\left(x-1\right)\left(2x-3\right)=0\)
d/ \(\left(x-2\right)^2+4x^{2018}\ge0\) vì dấu = không xảy ra nên đa thức vô nghiệm
\(x^2-3x-4=0\)
\(< =>x^2+x-4x-4=0\)
\(< =>x\left(x+1\right)-4\left(x+1\right)=0\)
\(< =>\left(x-4\right)\left(x+1\right)=0\)
\(< =>\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)
\(2x^3-x^2-2x+1=0\)
\(< =>x^2\left(2x-1\right)-\left(2x-1\right)=0\)
\(< =>\left(x^2-1\right)\left(2x-1\right)=0\)
\(< =>\left(x-1\right)\left(x+1\right)\left(2x+1\right)=0\)
\(< =>\hept{\begin{cases}x=1\\x=-1\\x=-\frac{1}{2}\end{cases}}\)
CM đa thức k có nghiệm:
a) x^2 + +5x + 8
Vì x^2 + +5x >hc = 0 với mọi x
=> x^2 + +5x + 8 > 0 với mọi x
Vậy đa thức x^2 + +5x + 8 k có nghiệm
các câu sau bn lm tương tự vậy nha
a) f(x) = 2x - 10 = 0
<=> 2x = 10
<=> x = 5
b) thay x = -1 vào đa thức, ta có:
g(-1) = a(-1)^3 + b(-1)^2 + c(-1) + d = 0
g(-1) = -a + b - c + d = 0
g(-1) = -a - c = -b - d
g(-1) = a + c = b + d (đpcm)
a) f(x) có nghiệm <=> 2x - 10 = 0
<=> 2x = 10
<=> x = 5
b) g(x) = ax3 + bx2 + cx + d
x = -1 là nghiệm của g(x)
=> g(-1) = a(-1)3 + b(-1)2 + c(-1) + d = 0
=> g(-1) = -a + b - c + d = 0
=> g(-1) = -a - c = -b - d
=> g(-1) = a + b = b + d
=> đpcm
\(2x^2+2x+1=0\)
\(< =>4x^2+4x+2=0\)
\(< =>\left(2x\right)^2+2.2x.1+1^2+1=0\)
\(< =>\left(2x+1\right)^2+1=0\)
Do \(\left(2x+1\right)^2\ge0=>\left(2x+1\right)^2+1>0\)
=> pt voo nghieemj
\(x^2-6x+15=0\)
\(< =>x^2-2.x.3+9+6=0\)
\(< =>\left(x-3\right)^2+6=0\)
Do \(\left(x-3\right)^2\ge0=>\left(x-3\right)^2+6>0\)
=> da thuc vo nghiem
ta có : \(P\left(\dfrac{-3}{2}\right)=0\)
\(\Leftrightarrow\left(-\dfrac{3}{2}\right)^3-a.\left(-\dfrac{3}{2}\right)^2-2\cdot\dfrac{-3}{2}+4=0\)
\(\Leftrightarrow-\dfrac{27}{8}-\dfrac{9}{4}a+3+4=0\)
\(\Leftrightarrow\cdot\dfrac{9}{4}a=-\dfrac{27}{8}-3-4=-16\)
\(=>a=-16:\dfrac{9}{4}=-\dfrac{64}{9}\)
Xét đa thức: Q(x)=2x2-2x+10
Có: 2x2 >= 0
2x < 2x2
=> 2x2- 2x >= 0
Mà 10 >0
=> 2x2-2x+10 >= 10
Vậy đa thức Q(x) vô nghiệm.
Cho x2-2x+10=0
=>x2-2.x.1+12+9=0
=>(x-1)2+9=0 (vô lí vì VT>VP)
=> Q(x) vô nghiệm