K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2020

3)  tìm m để x = -1 là nghiệm của đa thức M(x) = x^2 - mx +2

\(\Rightarrow M\left(x\right)=x^2-mx+2\)

\(\Leftrightarrow\left(-1\right)^2-m\left(-1\right)+2=0\)

\(\Leftrightarrow1-m\left(-1\right)=-2\)

\(\Leftrightarrow m\left(-1\right)=3\)

\(\Leftrightarrow m=-3\)

vậy với m = -3 thì x= -1 là nghiệm của đa thức M(x)

4) \(K\left(x\right)=a+b\left(x-1\right)+c\left(x-1\right)\left(x-2\right)\)

\(\Leftrightarrow K\left(1\right)=a+b\left(1-1\right)+c\left(1-1\right)\left(1-2\right)=1\)

\(\Leftrightarrow a=1\)

\(\Leftrightarrow K\left(2\right)=a+b\left(2-1\right)+c\left(2-1\right)\left(2-2\right)=3\)

\(\Leftrightarrow K\left(2\right)=a+b=3\)

\(\Leftrightarrow K\left(0\right)=a+b\left(0-1\right)+c\left(0-1\right)\left(0-2\right)=5\)

\(\Leftrightarrow a+\left(-b\right)+c2=5\)

ta có \(\hept{\begin{cases}a=1\\a+b=3\\a+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\1+b=3\\1+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\-1+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c2=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}\)

vậy \(a=1;b=2;c=3\)

11 tháng 8 2020

1. a) Sắp xếp :

f(x) = -x5 - 7x4 - 2x3 + x4 + 4x + 9

g(x) = x5 + 7x4 + 2x3 + 2z2 - 3x - 9

b) h(x) = f(x) + g(x)

           = -x5 - 7x4 - 2x3 + x2 + 4x + 9 + x5 + 7x4 + 2x3 + 2x2 - 3x - 9

           = ( x5 - x5 ) + ( 7x4 - 7x4 ) + ( 2x3 - 2x3 ) + ( 2x2 + x2 ) - 3x + ( 9 - 9 )

           = 3x2- 3x

c) h(x) có nghiệm <=> 3x2 - 3x = 0

                             <=> 3x( x - 1 ) = 0

                             <=> 3x = 0 hoặc x - 1 = 0

                             <=> x = 0 hoặc x = 1

Vậy nghiệm của h(x) là x= 0 hoặc x = 1

2. D(x) = A(x) + B(x) - C(x)

            = 6x3 + 5x2 + x3 - x2 - ( -2x3 + 4x2 )

            = 6x3 + 5x2 + x3 - x2 + 2x3 - 4x2

            = ( 6x3 + x3 + 2x3 ) + ( 5x2 - x2 - 4x2 ) 

            = 9x3 

b) D(x) có nghiệm <=> 9x3 = 0 => x = 0 

Vậy nghiệm của D(x) là x = 0

3. M(x) = x2 - mx + 2

x = -1 là nghiệm của M(x)

=> M(-1) = (-1)2 - m(-1) + 2 = 0

=>              1 + m + 2 = 0

=>              3 + m = 0

=>              m = -3

Vậy với m = -3 , M(x) có nghiệm x = -1

4. K(x) = a + b( x - 1 ) + c( x - 1 )( x - 2 )

K(1) = 1 => a + b( 1 - 1 ) + c( 1 - 1 )( 1 - 2 ) = 1

              => a + 0b + c.0.(-1) = 1

              => a + 0 = 1

              => a = 1

K(2) = 3 => 1 + b( 2 - 1 ) + c( 2 - 1 )( 2 - 2 ) = 3

              => 1 + 1b + c.1.0 = 3

              => 1 + b + 0 = 3

              => b + 1 = 3

              => b = 2

K(0) = 5 => 1 + 5( 0 - 1 ) + c( 0 - 1 )( 0 - 2 ) = 5

              => 1 + 5(-1) + c(-1)(-2) = 5

              => 1 - 5 + 2c = 5

              => 2c - 4 = 5

              => 2c = 9

              => c = 9/2

Vậy a = 1 ; b = 2 ; c = 9/2

10 tháng 1 2019

1/ a/ Ta có:

\(P\left(2\right)=m.2^2+\left(2m+1\right).2-10=16\)

\(\Leftrightarrow m-3=0\)

\(\Leftrightarrow m=3\)

b/ Theo câu a thì 

\(P\left(x\right)=3x^2+7x-10=0\)

\(\Leftrightarrow\left(3x^2-3x\right)+\left(10x-10\right)=0\)

\(\Leftrightarrow3x\left(x-1\right)+10\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3x+10\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{10}{3}\end{cases}}\)

10 tháng 1 2019

2/ Tương tự a phân tích nhân tử hộ thôi nha

a/ \(1-5x=0\)

b/ \(x^2\left(x+2\right)=0\)

c/ \(\left(x-1\right)\left(2x-3\right)=0\)

d/ \(\left(x-2\right)^2+4x^{2018}\ge0\) vì dấu = không xảy ra nên đa thức vô nghiệm

12 tháng 4 2016

bài 1:

a) C= 0

hay 3x+5+(7-x)=0

3x+(7-x)=-5

với 3x=-5

x= -5:3= \(x = { {-5} \over 3}\)

với 7-x=-5

x= 7+5= 12

=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12

mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha

12 tháng 4 2016

EM CHỊU RỒI ANH ƠI!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

31 tháng 3 2018

1/

a/ Đặt f (x) = x2 - 3

Khi f (x) = 0

=> \(x^2-3=0\)

=> \(x^2=3\)

=> \(x=\sqrt{3}\)

Vậy \(\sqrt{3}\)là nghiệm của đa thức x2 - 3.

b/ Đặt g (x) = x2 + 2

Khi g (x) = 0

=> \(x^2+2=0\)

=> \(x^2=-2\)

=> \(x\in\varnothing\)

Vậy x2 + 2 vô nghiệm.

c/ Đặt P (x) = x2 + (x2 + 3)

Khi P (x) = 0

=> \(x^2+\left(x^2+3\right)=0\)

=> \(\hept{\begin{cases}x^2=0\\x^2+3=0\end{cases}}\)=> \(\hept{\begin{cases}x=0\\x=\sqrt{3}\end{cases}}\)(loại)

Vậy x2 + (x2 + 3) vô nghiệm.

d/ Đặt \(Q\left(x\right)=2x^2-\left(1+2x^2\right)+1\)

Khi Q (x) = 0

=> \(2x^2-\left(1+2x^2\right)+1=0\)

=> \(2x^2-\left(1+2x^2\right)=-1\)

=> \(2x^2-1-2x^2=-1\)

=> -1 = -1

Vậy đa thức \(2x^2-\left(1+2x^2\right)+1\)có vô số nghiệm.

e/ Đặt \(h\left(x\right)=\left(2x-1\right)^2-16\)

Khi h (x) = 0

=> \(\left(2x-1\right)^2-16=0\)

=> \(\left(2x-1\right)^2=16\)

=> \(2x-1=4\)

=> 2x = 5

=> \(x=\frac{5}{2}\)

Vậy đa thức \(\left(2x-1\right)^2-16\)có nghiệm là \(\frac{5}{2}\).

11 tháng 5 2018

Tìm nghiệm của đa thức sau:

a) P(x)= x2+4x+3

x+ 4x + 3 = 0

<=> x2 + x + 3x + 3 = 0

<=> x(x + 1) + 3(x + 1) = 0

<=> (x + 1)(x + 3) = 0

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-3\end{cases}}}\) 

Vậy x = -1 ; x = -3 là nghiệm của đa thức P(x)

b) Q(x)= 2x2-5x+3

2x- 5x + 3 = 0

<=> 2x2 - 2x - 3x + 3 = 0

<=> (2x2 - 2x) - (3x - 3) = 0

<=> 2x(x - 1) - 3(x - 1) = 0

<=> (x - 1)(2x - 3) = 0

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\2x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{3}{2}\end{cases}}}\)

Vậy x = 1 ; x = 3/2 là nghiệm của đa thức Q(x)

c) R(x)= 2x2-x-1

2x- x - 1 = 0

<=> 2x2 - 2x + x - 1 = 0

<=> 2x(x - 1) + (x - 1) = 0

<=> (x - 1)(2x + 1) = 0

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\2x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{-1}{2}\end{cases}}}\)

Vậy x = 1 ; x = -1/2 là nghiệm của đa thức R(x)

d) S(x)= 3x2-x-4

3x- x - 4 = 0

<=> 3x2 + 3x - 4x - 4 = 0

<=> (3x2 + 3x) - (4x + 4) = 0

<=> 3x(x + 1) - 4(x + 1) = 0

<=> (x + 1)(3x - 4) = 0

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\3x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{4}{3}\end{cases}}}\)

Vậy x = -1 ; x = 4/3 là nghiệm của đa thức S(x)

12 tháng 5 2018

a) Cho P(x) = 0

=> x2 + 4x + 3 = 0

=> x+ x + 3x + 3 = 0

=> (x2+x) + ( 3x + 3) = 0

=> x(x+1) + 3(x+ 1) = 0

=> (x+3).(x+1) = 0

=> x+3= 0 hoặc x+1 = 0

=> x= 0-3 hoặc x=0-1

=> x= -3 hoặc x= -1

Vậy x= -3 và x = -1 là nghiệm của đa thức P(x) = x2+4x+3

3 tháng 7 2018

1/ 

a,=>P(x)=2x3-4x2+5x-7-2x3+4x2-x+10=4x+3

=>Q(x)=-9x3-8x2+5x+11+9x3+8x2-2x-7=3x+4

b, Ta có: P(x)=0 => 4x+3=0 => x=-3/4

Q(x)=0 => 3x+4=0 => x=-4/3

c, P(x)+Q(x)=4x+3+3x+4=7x+7

P(x)-Q(x)=4x+3-(3x+4)=4x+3-3x-4=x-1

2/

a, x2-5x-6=0

=>x2-6x+x-6=0

=>x(x-6)+(x-6)=0

=>(x+1)(x-6)=0

=>\(\orbr{\begin{cases}x+1=0\\x-6=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=6\end{cases}}}\)

b, (x+1)(x2+1)=0

Vì x2+1>0

=>x+1=0=>x=-1

c, \(-x^2-\frac{2}{5}=0\Rightarrow-x^2=\frac{2}{5}\Rightarrow x^2=\frac{-2}{5}\)

mà x2 lớn hoặc bằng 0  => không có x thỏa mãn

d, \(2x^2-x-6=0\Rightarrow2x^2-4x+3x-6=0\)

=>2x(x-2)+3(x-2)=0

=>(2x+3)(x-2)=0

=>\(\orbr{\begin{cases}2x+3=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=2\end{cases}}}\)

3/

a, P(x)=(5x3-x3-4x3)+(2x4-x4)+(-x2+3x2)+1=x4+2x2+1

b, P(1)=14+2.12+1=1+2+1=4

P(-1)=(-1)4+2.(-1)2+1=1+2+1=4

c, Vì \(x^4\ge0;2x^2\ge0\Rightarrow x^4+2x^2\ge0\Rightarrow P\left(x\right)=x^4+2x^2+1\ge1>0\)

Vậy P(x) khoogn có nghiệm

Ta có x2-x+1=(x2-2*1/2x+1/4)+3/4 =(x-1/2)2+3/4.

vì (x-1/2)2 >=0 với mọi x => (x-1/2)2+3/4 >=3/4 >0

vậy đa thức x2-x+1 vô nghiệm

26 tháng 3 2016

câu 1,

trong sách nâng cao và phát triển toán 7 tập 2 trang 15 có bài tương tự đấy.

26 tháng 3 2016

2/ a. Ta có : x- 5x + 6 = x- 3x - 2x + 6 = ( x​- 3x ) + ( - 2x + 6 ) = x ( x - 3 ) - 2 ( x - 3 ) = ( x - 3  )( x - 2 ) = 0 => x - 3 = 0 hoặc x - 2 = 0 => x = 3 hoặc x = 2

c. Tá có : 6x^2 - 11x + 3 = 6x^2 - 9x - 2x + 3 = ( 6x^2 -  9x ) + ( - 2x + 3 ) = 3x ( 2x - 3 ) - ( 2x - 3 ) = ( 2x - 3 )( 3x - 1 ) = 0 => 2x-3 =0 hoặc 3x-1 =0 => x= 3/2 hoặc x =1/3

Mấy bài sau làm tương tự nha

a/ M(x)+N(x)=(3x3+3x3)+(x2+2x2)-(3x+x)+(5+9)

                    =6x3+3x2-4x+14

b/ Ta có: M(x)+N(x)-P(x)=6x3+3x2+2x

=> P(x)=M(x)+N(x)-6x3+3x2+2x=-6x

c/ P(x)=-6x=0

=> x=0 là nghiệm đa thức P(x)

d/ Ta có: x2+4x+5

=x.x+2x+2x+2.2+1

=x(x+2)+2(x+2)+1

=(x+2)(x+2)+1

=(x+2)2+1

Mà (x+2)2\(\ne0\)=> Đa thức trên \(\ge1\)

=> Đa thức trên vô nghiệm.