Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2+2x+1=0\)
\(< =>4x^2+4x+2=0\)
\(< =>\left(2x\right)^2+2.2x.1+1^2+1=0\)
\(< =>\left(2x+1\right)^2+1=0\)
Do \(\left(2x+1\right)^2\ge0=>\left(2x+1\right)^2+1>0\)
=> pt voo nghieemj
\(x^2-6x+15=0\)
\(< =>x^2-2.x.3+9+6=0\)
\(< =>\left(x-3\right)^2+6=0\)
Do \(\left(x-3\right)^2\ge0=>\left(x-3\right)^2+6>0\)
=> da thuc vo nghiem
1) Ta có: 2x2 + 2x + 1 = 0
<=> x2 + (x2 + 2x + 1) = 0
<=> x2 + (x+ 1)2 = 0 <=> x = x+ 1 = 0 (Vì x2 \(\ge\) 0 và (x+ 1)2 \(\ge\) 0 với mọi x)
x = x+ 1 => 0 = 1 Vô lý
Vậy đa thức đã cho ko có nghiệm
2) a) x3-2x2-5x+6 = 0
=> x3 - x2 - x2 + x - 6x + 6 = 0
=> ( x3 - x2) - (x2 - x) - (6x - 6) = 0 => x2.(x- 1) - x(x - 1) - 6(x - 1) = 0
=> (x - 1).(x2 - x - 6) = 0 => (x -1).(x2 - 3x + 2x - 6) = 0
=> (x- 1).[x(x - 3) + 2.(x - 3)] = 0 => (x - 1).(x + 2).(x - 3) = 0
=> x- 1= 0 hoặc x + 2 = 0 hoặc x - 3 = 0
=> x = 1 hoặc x = -2 hoặc x = 3
Đa thức đã cho có 3 nghiệm là: 1; -2 ; 3
b) x3 + 3x2 - 6x - 8 = 0
=> x3 + x2 + 2x2 + 2x - 8x - 8 = 0
=> x2.(x + 1) + 2x.(x + 1) - 8 (x + 1) = 0
=> (x+ 1). [x2 + 2x - 8] = 0
=> (x+1).[x2 + 4x - 2x - 8] = 0 => (x +1).[x.(x+4) - 2.(x+4)] = 0
=> (x +1). (x -2). (x+4) = 0
=> x+ 1 hoặc x - 2 = 0 hoặc x+ 4 = 0
=> x = -1 hoặc x = 2 hoặc x = -4
Đa thức đã cho có 3 nghiệm là -1; 2; -4
nghiem cua da thuc la tim x de da thuc do =0 muon tim nghiem da thuc bạn chi viec thay x vao thoi
x = 1 ; f(x) = 0
.......bạn tu thay x vao se lam dc
Ta có : f(x)=0 khi và chỉ khi : x^4 +2x^3 - 2x^2 -6x+5 =0
nếu x=1 thì:f(1)=1^4 +2*1^3- 2*1^2-6*1+5
=1+2-2-6+5
=0
tương tự ta có: nếu x=-1 thì f(-1)=8; x=2 thì f(2)=7;x=-2thi f(-2)=9
vậy x=1 là nghiệm của f(x)
- -6x3 + x2 + 5x - 2 = 0
=> -6x3 - 6x2 + 7x2 + 7x - 2x - 2 = 0
=> -6x2(x+1) + 7x(x+1) - 2(x+1) = 0
=> (x+1)(-6x2+7x-2) = 0
=> (x+1)(x2-\(\frac{7}{6}x+\frac{1}{3}\)) = 0
\(\Rightarrow\left(x+1\right)\left(x-\frac{1}{2}\right)\left(x-\frac{2}{3}\right)=0\)
=> x = -1 hoặc x = 1/2 hoặc x = 2/3
- 3x3 + 19x2 + 4x - 12 = 0
=> 3x3 + 3x2 + 16x2 + 16x - 12x - 12 = 0
=> (x+1)(3x2+16x-12)=0
=> (x+1)\(\left(x^2+\frac{16}{3}x-4\right)=0\)
=> (x+1) \(\left(x-\frac{2}{3}\right)\left(x+6\right)=0\)
=> x = -1 hoặcx = 2/3 hoặc x = -6
- 2x3 - 11x2 + 10x + 8 = 0
=> 2x3 - 4x2 - 7x2 + 14x - 4x + 8 = 0
=> 2x2(x - 2) - 7x(x - 2) - 4(x - 2) = 0
=> (x - 2)(2x2 - 7x - 4)=0
=> (x - 2)(\(x^2-\frac{7}{2}x-2\)) = 0
=> \(\left(x-2\right)\left(x-4\right)\left(x+\frac{1}{2}\right)=0\)
=> x = 2 hoặc x = 4 hoặc x = -1/2
Ta có P(x)=0
=> \(2x^3-6x=0\)
=> 2x(x-3)=0
=> x=0 hoặc x-3=0
+) x=0
+) x-3=0
x=3
Vậy x=0 hoặc x=3 là nghiệm của đa thức P(x)
2x^2-6x+2=0
2(×^2-3×+1)=0
×^2-3×+1=0
(×^2-3×+9/4)-5/4=0
(×-3/2)^2=5/4
×-3/2=+-căn 5/2
×=3+-căn5+3/2
Đặt \(2x^2-6x+3=0\)
\(\Delta=\left(-6\right)^2-4.3.2=36-24=12>0\)
\(x_1=\frac{6-\sqrt{12}}{2};x_2=\frac{6+\sqrt{12}}{2}\)