Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a )
\(x^2-x+1=0\)
( a = 1 ; b= -1 ; c = 1 )
\(\Delta=b^2-4.ac\)
\(=\left(-1\right)^2-4.1.1\)
\(=1-4\)
\(=-3< 0\)
vì \(\Delta< 0\) nên phương trình vô nghiệm
=> đa thức ko có nghiệm
b ) đặc t = x2 ( \(t\ge0\) )
ta có : \(t^2+2t+1=0\)
( a = 1 ; b= 2 ; b' = 1 ; c =1 )
\(\Delta'=b'^2-ac\)
\(=1^2-1.1\)
\(=1-1=0\)
phương trình có nghiệp kép
\(t_1=t_2=-\frac{b'}{a}=-\frac{1}{1}=-1\) ( loại )
vì \(t_1=t_2=-1< 0\)
nên phương trình vô nghiệm
Vay : đa thức ko có nghiệm
2/ Đặt \(f\left(x\right)=\left(2x^2-3x+5\right)+3x^2+3x-6\)
Ta có \(f\left(x\right)=\left(2x^2-3x+5\right)+3x^2+3x-6\)
=> \(f\left(x\right)=2x^2-3x+5+3x^2+3x-6\)
=> \(f\left(x\right)=5x^2-1\)
Khi \(f\left(x\right)=0\)
=> \(5x^2-1=0\)
=> \(5x^2=1\)
=> \(x^2=\frac{1}{5}\)
=> \(x=\sqrt{\frac{1}{5}}\)
Vậy f (x) có 1 nghiệm là \(x=\sqrt{\frac{1}{5}}\)
Bài 1 :
\(A=x^2-2xy^2+y^4=\left(x-y^2\right)^2=-\left(y^2-x\right)^2\)
Mà \(B=-\left(y^2-x\right)^2\)
Nên ta có : đpcm
Bài 2
Đặt \(\left(x+1\right)\left(x-2\right)\left(2x-1\right)=0\)
TH1 : x = -1
TH2 : x = 2
TH3 : x = 1/2
Bài 4 :
a, \(\left(2x+3\right)\left(5-x\right)=0\Leftrightarrow x=-\frac{3}{2};5\)
b, \(\left(x-\frac{1}{2}\right)\left(3x+1\right)\left(2-x\right)=0\Leftrightarrow x=\frac{1}{2};-\frac{1}{3};2\)
c, \(x^2+2x=0\Leftrightarrow x\left(x+2\right)=0\Leftrightarrow x=0;-2\)
d, \(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow x=0;1\)
Bài 1:
a: cho -6x+5=0
⇔ x=\(\dfrac{-5}{-6}\)=\(\dfrac{5}{6}\)
vậy nghiệm của đa thức là:\(\dfrac{5}{6}\)
b: cho x2-2x=0 ⇔ x(x-2)
⇒ x=0 / x-2=0 ⇒ x=0/2
Vậy nghiệm của đa thức là :0 hoặc 2
d : cho x2-4x+3=0 ⇔ x2-x-3x+3=0 ⇔ x(x-1) - 3(x-1)=0 ⇔ (x-3)(x-1)
⇒\(\left[{}\begin{matrix}x-3=0\\x-1=0\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
Vậy nghiệm của đa thức là 1 hoặc 3
f : Cho 3x3+x2=0 ⇔ x2(3x+1)=0
⇒\(\left[{}\begin{matrix}x^2=0\\3x+1=0\end{matrix}\right.\)⇒\(\left[{}\begin{matrix}x=0\\x=\dfrac{-1}{3}\end{matrix}\right.\)
Vậy nghiệm của đa thức là :0 hoặc \(\dfrac{-1}{3}\)
Xin lỗi mình không có thời gian làm hết
Bài 1:
Thay x=1 vào đa thức F(x) ta được:
F(1) = 14+2.13-2.12-6.1+5 = 0
=> x=1 là nghiệm của đa thức F(x)
Tương tự ta thế -1; 2; -2 vào đa thức F(x)
Vậy x=1 là nghiệm của đa thức F(x)
a, Cho R(x)=0
\(\Rightarrow\)\(\frac{2}{3}x+\frac{1}{5}=0\)
\(\Rightarrow\frac{2}{3}x=-\frac{1}{5}\)
\(\Rightarrow x=-\frac{3}{10}\)
Vậy x=\(-\frac{3}{10}\)là nghiệm của R(x)
b,Cho C(x)=0
\(\Rightarrow-4x^2+8x\)=0
\(\Rightarrow-4x\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-4x=0\\x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy C(x) có nghiệm x= 0 hoặc x=2
Câu e) bạn làm sai rồi nhé, nghiệm phải là \(x=3\) và \(x=-3\) nhé bạn.
1)A(x)=-3x+6=0
=-3x=-6
x=2
Vậy ...
2)x2-x=0
=>x2=x
=>x=0 hoặc 1
Vậy ...
3)x2+3x=0
=>x2=-3x
=>x=-3 (chia cả hai vế cho x)
4)x2 lớn hơn hoặc bằng 0
=>x2 +1 khác 0
=> đa thức D(x)=x2+1 vô nghiêm
Vây ...
Có A (x)= -3x + 6
\(\Rightarrow\)-3x + 6 = 0
-3x = - 6
x =2
Vậy x= 2 là nghiệm của đa thức A (x)
Có B (x)= \(x^2-x\)
\(\Rightarrow x^2-x=0\)
x( x - 1) = 0
\(\Rightarrow\)x = 0 hoặc x - 1 = 0
x = 1
Vậy x = 0 và x= 1 là nghiệm của đa thức B( x)
Có C (x) = \(x^2+3x\)
\(\Rightarrow\)\(x^2+3=0\)
x( x + 3 ) = 0
Và bạn làm như đa thức B(x)
Có D(x) = \(x^2+1\)
=> x2 + 1 = 0
x2 = -1
mà \(x^2\ne1\) nên đa thức D(x) không có nghiệm
e Giả sử x^2 -3x +2=0 => x^2-3x=-2 => x(x-3)=-2=1*-2=-1*2 và
TH1 x=1 => 1(1-3)=1*-2=-2 ( chọn)
TH2 x=-1 => -1(-1-3) =4( loại)
TH3 x=2 => 2(2-3)=-2( chọn)
TH4 x=-2 => -2(-2-3)=10 ( loại)
Vây số giá trị nghiệm của đa thức đó là 1;2
a.Giả sử: \(A\left(x\right)=0\)
\(\Rightarrow9-3x=0\)
\(-3x=-9\)
\(x=3\)
b. Giả sử \(B\left(x\right)=0\)
\(\Rightarrow x^3+x=0\)
\(x\left(x^2+1\right)=0\)
\(x=0\) ( vì \(x^2+1\ge1>0\) )
c.Giả sử: \(C\left(x\right)=0\)
\(\Rightarrow x^2+5=0\) ( vô lí ) ( vì \(x^2+5\ge5>0\) )
d.Giả sử: \(D\left(x\right)=0\)
\(\Rightarrow\left(x+5\right)\left(\left|x\right|-1\right)=0\)
\(\left[{}\begin{matrix}x+5=0\\\left|x\right|-1=0\end{matrix}\right.\) \(\left[{}\begin{matrix}x=5\\x=\pm1\end{matrix}\right.\)
Mong a cj kết luận giúp e vs ạ