K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2022

`a)` Cho `f(x)=0`

`=>x-1/4x^2=0`

`=>x(1-1/4x)=0`

`@TH1:x=0`

`@TH2:1-1/4x=0=>1/4x=1=>x=4`

_______________________________________________________

`b)` Cho `g(x)=0`

`=>(2x+5)(1-2x)=0`

`@TH1:2x+5=0=>2x=-5=>x=-5/2`

`@TH2:1-2x=0=>2x=1=>x=1/2`

22 tháng 5 2022

a) cho f(x) = 0

\(=>x-\dfrac{1}{4}x^2=0\)

\(x\left(1-\dfrac{1}{4}x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\\dfrac{1}{4}x=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

b) cho g(x) = 0

\(=>\left(2x+5\right)\left(1-2x\right)=0\)

\(=>\left[{}\begin{matrix}2x=-5\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{5}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

16 tháng 4 2018

a )   Xét : \(5-2x=0\)

\(\Rightarrow2x=5-0\)

\(\Rightarrow2x=5\)

\(\Rightarrow x=\frac{5}{2}\)

Vậy \(x=\frac{5}{2}\)là nghiệm của đa thức f( x ) = 5 - 2x 

b )   Thay x = 2 vào \(\frac{2x-5}{x-2}+\frac{x-1}{x-2}\), ta được : 

\(\frac{2.2-5}{2-2}+\frac{2-1}{2-2}\)

\(=\frac{4-5}{0}+\frac{1}{0}\)

\(\Rightarrow\)Vô lý ( vì Mẫu số luôn luôn khác 0 ) 

Vậy x = 2 không phải là nghiệm của \(\frac{2x-5}{x-2}+\frac{x-1}{x-2}\)

Chúc bạn học tốt !!! 

16 tháng 4 2018

a) Cho f(x) =0

=> 5 -2x =0

        2x  =5

         x =5/2

KL: x= 5/2 là nghiệm của đa thức f(x)

b) Cho x =2

\(\Rightarrow\frac{2.2-5}{2-2}+\frac{2-1}{2-2}=\frac{2.2-5}{0}+\frac{2-1}{0}\)( vì không có phân số nào có mẫu số bằng 0 )

                                                                                              => x =2 không phải nghiệm của biểu thức 

p/s nha

16 tháng 4 2018

a/ Có: f(x) = 5 - 2x = 0

<=> -2x = -5 <=> \(x=\dfrac{5}{2}\)

b/ ĐKXĐ: x - 2 khác 0 => x khác 2

Vậy x = 2 k là nghiệm của biểu thức trên

18 tháng 5 2018

Bài 1:

Thay x=1 vào đa thức F(x) ta được:

F(1) = 14+2.13-2.12-6.1+5 = 0

=> x=1 là nghiệm của đa thức F(x)

Tương tự ta thế -1; 2; -2 vào đa thức F(x)

Vậy x=1 là nghiệm của đa thức F(x)

7 tháng 4 2019

\(f_{\left(x\right)}-g_{\left(x\right)}=2x^5+x^4+1x^2+x+1-\left(2x^5+x^4-x^2+1\right)\)

                     \(=2x^5+x^4+1x^2+x+1-2x^5-x^4+x^2-1\)

                       \(=\left(2x^5-2x^5\right)+\left(x^4-x^4\right)+\left(1x^2+x^2\right)+x+\left(1-1\right)\)

                       \(=2x^2+x\)

+, Đặt \(2x^2+x=0\)

     \(\Leftrightarrow x.2x=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x=0\end{cases}}\Leftrightarrow x=0\)

                        

7 tháng 4 2019

ak bạn thêm kết kuận nha!

7 tháng 1 2020

\(f\left(x\right)=4x^2+3x+1\)

\(g\left(x\right)=3x^2-2x+1.\)

a) \(h\left(x\right)=f\left(x\right)-g\left(x\right)\)

\(\Rightarrow h\left(x\right)=\left(4x^2+3x+1\right)-\left(3x^2-2x+1\right)\)

\(\Rightarrow h\left(x\right)=4x^2+3x+1-3x^2+2x-1\)

\(\Rightarrow h\left(x\right)=\left(4x^2-3x^2\right)+\left(3x+2x\right)+\left(1-1\right)\)

\(\Rightarrow h\left(x\right)=x^2+5x.\)

b) Ta có \(h\left(x\right)=x^2+5x.\)

Đặt \(x^2+5x=0\)

\(\Rightarrow x.\left(x+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=0-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

Vậy \(x=0\)\(x=-5\) là các nghiệm của đa thức \(h\left(x\right).\)

Chúc bạn học tốt!

8 tháng 1 2020

mơn nhéok

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

6 tháng 6 2018

Giải:

a) \(h\left(x\right)=f\left(x\right)+g\left(x\right)\)

\(\Leftrightarrow h\left(x\right)=9-x^5+4x-2x^3+x^2-7x^4+x^5-9+2x^2+7x^4+2x^3-3x\)

\(\Leftrightarrow h\left(x\right)=x+3x^2\)

b) Để đa thức h(x) có nghiệm

\(\Leftrightarrow h\left(x\right)=0\)

\(\Leftrightarrow x+3x^2=0\)

\(\Leftrightarrow x\left(1+3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\1-3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy ...