Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+b^2+3ab⋮5\)
\(\Leftrightarrow6a^2+12ab+6b^2⋮5\)
\(\Leftrightarrow\left(2a+3b\right)\left(3a+2b\right)⋮5\)
Giả sử \(2a+3b⋮5\) (1)
Mà \(9\left(2a+3b\right)-\left(3a+2b\right)=15a+25b⋮5\)
\(\Rightarrow3a+2b⋮5\) (2)
Mặt khác 5 là số nguyên tố (3)
Từ (1)(2)(3) \(\Rightarrow\left(2a+3b\right)\left(3a+2b\right)⋮25\)
\(\dfrac{4}{a+b}-\dfrac{2a^2+3b^2}{2a^3+3b^3}-\dfrac{2b^2+3a^2}{2b^3+3a^3}=\dfrac{\left(a-b\right)^2.\left(12b^4+12ab^3-a^2b^2+12a^3b+12a^4\right)}{\left(a+b\right)\left(2a^3+3b^3\right)\left(2b^3+3a^3\right)}\ge0\)
PS: Còn cách dùng holder nữa mà lười quá
holder Câu hỏi của Lê Minh Đức - Toán lớp 9 - Học toán với OnlineMath
a/ \(\frac{4bc-a^2}{bc+2a^2}.\frac{4ab-c^2}{ab+2c^2}.\frac{4ac-b^2}{ac+2b^2}\)
\(=\frac{4bc-\left(b+c\right)^2}{bc+2\left(b+c\right)^2}.\frac{4\left(-b-c\right)b-c^2}{\left(-b-c\right)b+2c^2}.\frac{4\left(-b-c\right)c-b^2}{\left(-b-c\right)c+2b^2}\)
\(=\frac{-\left(b-c\right)^2}{\left(c+2b\right)\left(b+2c\right)}.\frac{-\left(c+2b\right)^2}{-\left(b-c\right)\left(b+2c\right)}.\frac{-\left(b+2c\right)^2}{\left(b-c\right)\left(c+2b\right)}=1\)
các bác nào biết link lời giải thì cmt vào cũng được, chân thành cảm ơn