\(\dfrac{6n+3}{3n-2}\)

\(\dfrac{n^2...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2017

BÀi 1

Để A \(\in\) Z

=>\(\left(n+2\right)⋮\left(n-5\right)\)

=>\([\left(n-5\right)+7]⋮\left(n-5\right)\)

=>\(7⋮\left(n-5\right)\)

=>\(n-5\in\left\{1;7;-1;-7\right\}\)

=>\(n\in\left\{6;13;4;-2\right\}\)

Vậy \(n\in\left\{6;13;4;-2\right\}\)

29 tháng 4 2017

Giúp mk nha

Arigatou gozaimasu!

22 tháng 5 2017

Gọi d là ước chung nguyên tố của 2n + 3 và 4n + 1

\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\4n+1⋮d\end{matrix}\right.\)

+) Vì : \(2n+3⋮d;2\in N\)

\(\Rightarrow2\left(2n+3\right)⋮d\Rightarrow4n+6⋮d\)

Mà : \(4n+1⋮d\)

\(\Rightarrow\left(4n+6\right)-\left(4n+1\right)⋮d\)

\(\Rightarrow4n+6-4n-1⋮d\Rightarrow5⋮d\)

\(\Rightarrow\) d là ước của 5 ; d nguyên tố

\(\Rightarrow d=5\)

Với \(d=5\Rightarrow4n+1⋮5\)

\(\Rightarrow5n-n+1⋮5\Rightarrow5n-\left(n-1\right)⋮5\)

Vì : \(n\in N\Rightarrow5n⋮5\)

\(\Rightarrow n-1⋮5\Rightarrow n-1=5k\Rightarrow n=5k+1\)

Thử lại : n = 5k + 1 ( \(k\in N\))

\(2n+3=2\left(5k+1\right)+3=10k+5=5\left(2k+1\right)⋮5\)

\(4n+1=4\left(5k+1\right)+1=20k+5=5\left(4k+1\right)⋮5\)

\(\Rightarrow\) Với n = 5k + 1 thì phân số trên rút gọn được

\(\Rightarrow n\ne5k+1\) thì phân số trên tối giản

Vậy \(n\ne5k+1\)

Hai câu cuối tương tự

25 tháng 7 2017

\(n\left(n+3\right)=n^2+3n\)

\(\left(n+2\right)\left(n+1\right)=n^2+3n+2\)

\(n^2+3n< n^2+3n+2\Rightarrow\dfrac{n}{n+1}< \dfrac{n+2}{n+3}\left(n\in N\right)\)

b) \(\dfrac{n}{2n+1}=\dfrac{3n}{6n+3}< \dfrac{3n+1}{6n+3}\)

c) \(\dfrac{10^8+2}{10^8-1}=1+\dfrac{1}{10^8-1}\)

\(\dfrac{10^8}{10^8-3}=\left(1+\dfrac{3}{10^8-3}\right)\)

\(\dfrac{1}{10^8-1}>\dfrac{3}{10^8-3}\Rightarrow\dfrac{10^8+2}{10^8-1}< \dfrac{10^8}{10^8-3}\)

25 tháng 7 2017

Làm dần dần và làm từ từ, suy ra được nhiều cách giải.

a) \(\dfrac{n}{n+1}\)\(\dfrac{n+2}{n+3}\)

+ Cách 1:

\(\dfrac{n}{n+1}=\dfrac{n+1-1}{n+1}=1-\dfrac{1}{n+1}\)

\(\dfrac{n+2}{n+3}=\dfrac{n+3-1}{n+3}=1-\dfrac{1}{n+3}\)

\(\dfrac{1}{n+1}>\dfrac{1}{n+3}\) nên \(1-\dfrac{n}{n+1}< 1-\dfrac{1}{n+3}\)

\(\Rightarrow\dfrac{n}{n+1}< \dfrac{n+2}{n+3}\)

+ Cách 2:

Ta so sánh: \(n\left(n+3\right)\)\(\left(n+1\right)\left(n+2\right)\)

\(n\left(n+3\right)=nn+3n=n^2+3n\)

\(\left(n+1\right)\left(n+2\right)=\left(n+1\right)n+\left(n+1\right).2=n^2+n+2n+2=n^2+3n+2\)

\(n^2+3n< n^2+3n+2\) nên \(\dfrac{n}{n+1}< \dfrac{n+2}{n+3}\)

b) \(\dfrac{n}{2n+1}\)\(\dfrac{3n+1}{6n+3}\)

Ta so sánh: \(n\left(6n+3\right)\)\(\left(2n+1\right)\left(3n+1\right)\)

\(n\left(6n+3\right)=n.6n+3n=6n^2+3n\)

\(\left(2n+1\right)\left(3n+1\right)=\left(2n+1\right)3n+\left(2n+1\right)=6n^2+3n+2n+1=6n^2+5n+1\)

\(6n^2+3n< 6n^2+5n+1\) nên \(\dfrac{n}{2n+1}< \dfrac{3n+1}{6n+3}\)

c) \(\dfrac{10^8+2}{10^8-1}\)\(\dfrac{10^8}{10^8-3}\)

\(\dfrac{10^8+2}{10^8-1}=\dfrac{10^8-1+3}{10^8-1}=1+\dfrac{3}{10^8-1}\)

\(\dfrac{10^8}{10^8-3}=\dfrac{10^8-3+3}{10^8-3}=1+\dfrac{3}{10^8-3}\)

\(\dfrac{3}{10^8-1}>\dfrac{3}{10^8-3}\) nên \(\dfrac{10^8+2}{10^8-1}>\dfrac{10^8}{10^8-3}\)

d) \(\dfrac{3^{17}+1}{3^{20}+1}\)\(\dfrac{3^{20}+1}{3^{23}+1}\)

(đang tìm cách làm, và thêm vài cách khác)

14 tháng 6 2017

a, Gọi d là ước chung của 21n + 4 và 14n + 3 \(\left(d\in Z,d\ne0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}21n+4⋮d\\14n+3⋮d\end{matrix}\right.\)

+) Vì : \(21n+4⋮d\Rightarrow2\left(21n+4\right)⋮d\Rightarrow42n+8⋮d\)

+) Vì : \(14n+3⋮d\Rightarrow3\left(14n+3\right)⋮d\Rightarrow42n+9⋮d\)

\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)

\(\Rightarrow42n+9-48n-8⋮d\Rightarrow1⋮d\)

\(\Rightarrow d\in\left\{1;-1\right\}\) => \(\dfrac{21n+4}{14n+3}\) là phân số tối giản

b, tương tự

c, Gọi d là ước chung của 2n + 3 và n2 + 3n + 2 \(\left(d\in Z,d\ne0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\n^2+3n+2⋮d\end{matrix}\right.\)

+) Vì \(2n+3⋮d\Rightarrow n\left(2n+3\right)⋮d\Rightarrow2n^2+3n⋮d\)

+) Vì : \(n^2+3n+2⋮d\Rightarrow2\left(n^2+3n+2\right)⋮d\Rightarrow2n^2+6n+4⋮d\)

Mà : \(2n^2+3n⋮d\)

\(\Rightarrow\left(2n^2+6n+4\right)-\left(2n^2+3n\right)⋮d\)

\(\Rightarrow2n^2+6n+4-2n^2-3n⋮d\Rightarrow3n+4⋮d\)

\(\Rightarrow2\left(3n+4\right)⋮d\Rightarrow6n+8⋮d\)

Vì : \(2n+3⋮d\Rightarrow3\left(2n+3\right)⋮d\Rightarrow6n+9⋮d\)

\(\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d\)

\(\Rightarrow6n+9-6n-8⋮d\Rightarrow1⋮d\)

\(\Rightarrow d\in\left\{-1;1\right\}\Rightarrow\dfrac{2n+3}{n^2+3n+2}\) là phân số tối giản

d, tương tự câu c

15 tháng 6 2017

Mình làm 1 câu thôi các câu sau bạn làm theo mẫu nhé

Gọi d là UCLN(21n+4;14n+3)

\(\Leftrightarrow21n+4⋮d\Rightarrow2\left(21n+4\right)⋮d\Rightarrow42n+8⋮d\)

\(\Leftrightarrow14n+3⋮d\Rightarrow3\left(14n+3\right)⋮d\Rightarrow42n+9⋮d\)

\(42n+8;42n+9⋮d\)

\(\Leftrightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)

\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow\dfrac{21n+4}{14n+3}\)tối giản với mọi n

22 tháng 3 2017

Mik thấy đề bài phần A có vấn đề rùi bn ạ!!!

22 tháng 3 2017

B = \(\dfrac{n+4}{n-2}\) = \(\dfrac{\left(n-2\right)+6}{n-2}\) = 1 + \(\dfrac{6}{n-2}\).

Để B là số nguyên => \(\dfrac{6}{n-2}\) là số nguyên.

<=> 6 chia hết cho n - 2.

<=> n - 2 là ước của 6 = {-6;-3;-2;-1;1;2;3;6}.

Ta có bảng giá trị:

n - 2 -6 -3 -2 -1 1 2 3 6
n -4 -1 0 1 3 4 5 8

Các giá trị nêu trên đều thỏa mãn.

Vậy n thuộc: {-4;-1;0;1;3;4;5;8}.

8 tháng 3 2018

câu 1

\(\dfrac{m}{2}\).\(\dfrac{2}{n}\)=\(\dfrac{1}{2}\)

\(\dfrac{m}{2}\).\(\dfrac{2}{n}\)=\(\dfrac{4}{8}\)

\(\dfrac{4}{8}\)=\(\dfrac{2.m}{2.n}\)

\(\dfrac{4}{8}\)=\(\dfrac{1.m}{1.n}\)

\(\dfrac{4}{8}\)=\(\dfrac{m}{n}\)=\(\dfrac{1}{2}\)

câu2

8 tháng 3 2018

câu2

a/ta có;n+1/n-2

=n-2+3/n-2

để a là số ngyên thì n-2+3 phải chia hết cho n-2

xét n-2+3 có n-2 chia hết cho n-2 nên suy ra 3 cũng phải chia hết cho n-2

vậy n-2 là Ư(3)=1;-1;3;-3

nếu n-2=-1thì n=-1+2 ;n=1

nếu n-2=1 thì n=1+2;n=3

nếu n-2=-3 thì n=-3+2=-1(ko đúng với điều kiện đề bài cho)

nếu n-2=3 thì n= 3+2=5

a: Để -7/n là số nguyên thì \(n\in\left\{1;-1;7;-7\right\}\)

b: Để 12/n-2 là số nguyên thì \(n-2\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)

hay \(n\in\left\{3;1;4;0;5;-1;6;-2;8;-4;14;-10\right\}\)

c: Để n+2/n-2 là số nguyên thì \(n-2+4⋮n-2\)

\(\Leftrightarrow n-2\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(n\in\left\{3;1;4;0;6;-2\right\}\)

d: Để 6n+1/3n-1 là số nguyên thì \(6n-2+3⋮3n-1\)

\(\Leftrightarrow3n-1\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{\dfrac{2}{3};0;\dfrac{4}{3};-\dfrac{2}{3}\right\}\)