Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(A=\frac{2n-5}{n+3}=\frac{2n+6-11}{n+3}=\frac{2n+6}{n+3}-\frac{11}{n+3}=2-\frac{11}{n+3}\)
\(2\in Z\Rightarrow\)Để \(A=2-\frac{11}{n+3}\in Z\)thì \(\frac{11}{n+3}\in Z\Rightarrow n+3\inƯ\left(11\right)\)
\(Ư\left(11\right)=\left(\pm1;\pm11\right)\Rightarrow n+3=\left(\pm1;\pm11\right)\)
*\(n+3=1\Rightarrow n=-2\)
*\(n+3=-1\Rightarrow n=-4\)
*\(n+3=11\Rightarrow n=8\)
*\(n+3=-11\Rightarrow n=-14\)
Để\(A\inℤ\)
thì\(n+2⋮n-3\Leftrightarrow\left(n-3\right)+5⋮n-3\Rightarrow5⋮n-3\)
\(\Leftrightarrow n-3\inƯ\left(5\right)\Leftrightarrow n\in\left\{4;8;2;-2\right\}\)
a, Ta có : \(A=\frac{n+2}{n-3}=\frac{n-3+5}{n-3}=1+\frac{5}{n-3}\)
Để A có giá trị nguyên thì : \(\frac{5}{n-3}\)phải có giá trị nguyên.
Lại có : \(\frac{5}{n-3}\)có giá trị nguyên khi và chỉ khi : \(5:n-3\)
\(\Rightarrow n-3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
\(\Rightarrow n\in\left\{-2;2;4;8\right\}\)
Vậy:............
b, Để A đạt giá trị lớn nhất thì : \(1+\frac{5}{n-3}\)đạt giá trị lớn nhất
\(1+\frac{5}{n-3}\)lớn nhất khi và chỉ khi : \(\frac{5}{n-3}\)lớn nhất
Khi đó : \(n-3\)nhỏ nhất
Do : \(n-3\ne0\Rightarrow n-3=1\Rightarrow n=4\)
Vậy :......
Để A là số nguyên thì n-5 thuộc Ư(7)
=>n-5 thuộc {1;-1;7;-7}
=>n thuộc {4;6;12;-2}
Vậy: B={4;6;12;-2}
a, Để x là số nguyên
=> a - 5 chia hét cho a
Vì a chia hết cho a
=> -5 chia hết cho a
=> a \(\in\){1; -1; 5; -5}
\(\frac{a}{b}=\frac{a\left(b+n\right)}{b\left(b+n\right)}=\frac{ab+an}{b\left(b+n\right)}\)
\(\frac{a+n}{b+n}=\frac{b\left(a+n\right)}{b\left(b+n\right)}=\frac{ab+bn}{b\left(b+n\right)}\)
TH1: a = b
=> an = bn
=> ab+an = ab+bn
=> \(\frac{a}{b}=\frac{a+n}{b+n}\)
TH2: a > b
=> an > bn
=> ab + an > ab + bn
=> \(\frac{a}{b}>\frac{a+n}{b+n}\)
TH3: a < b
=> an < bn
=> ab + an < ab + bn
=> \(\frac{a}{b}<\frac{a+n}{b+n}\)
a,Tìm x để A là số hữu tỉ.
để A là số hữu tỉ => x - 1 \(\ne\)0
=> x \(\ne\)1
vậy x thuộc Z và x \(\ne\) 1
`a,`
`A=3/(x-1)`
Để `A` là số hữu tỉ
`->x-1 \ne 0`
`->x\ne 0+1`
`-> x \ne 1`
Vậy `x \ne 1` để `A` là số hữu tỉ
`b,`
`A=3/(x-1) (x \ne 1)`
Để `A` thuộc Z
`->3` chia hết cho `x-1`
`->x-1` thuộc ước của `3 = {1;-1;3;-3}`
`->x` thuộc `{2;0;4;-2}` (Thỏa mãn)
Vậy `x` thuộc `{2; 0; 4;-2}` để `A` thuộc Z
`c,`
`A=3/(x-1) (x \ne 1)`
Để `A` lớn nhất
`->3/(x-1)` lớn nhất
`->x-1` nhỏ nhất
`->x-1=1` (Do `1` là số nguyên dương nhỏ nhất)
`->x=2` (Thỏa mãn)
Với `x=2`
`->A=3/(2-1)=3/1=3`
Vậy `max A=3` khi `x=2`
`d,`
`A=3/(x-1) (x \ne 1)`
Để `A` nhỏ nhất
`->3/(x-1)` nhỏ nhất
`->x-1` lớn nhất
`->x-1=-1` (Do `-1` là số nguyên âm lớn nhất)
`->x=0`
Với `x=0`
`-> A=3/(0-1)=3/(-1)=-3`
Vậy `min A=-3` khi `x=0`
Bạn tham khảo tại đây:
Câu hỏi của Phạm Huyền Anh - Toán lớp 7 - Học toán với OnlineMath
P=\(\frac{n+2}{n-7}\)=\(\frac{\left(n-7\right)+7+2}{n-7}\)= 1+\(\frac{9}{n-7}\)
-Nếu n = 7 thì P không tồn tại
-Nếu n > 7 => n - 7 > 0 =>\(\frac{9}{n-7}\)> 0 => P > 1
-Nếu n < 7 => n - 7 < 0 => \(\frac{9}{n-7}\)< 0 => P < 1
Do đó ta chọn giá trị lớn nhất của P khi n > 7
Mà n \(\varepsilon\)Z => n - 7 \(\varepsilon\)Z và n - 7 > 0
=> n - 7 là số nguyên dương lớn nhất
=> n - 7 = 1
=> n = 7 + 1
=> n = 8
-Thay n = 8 vào P ta có :
P = \(\frac{8+2}{8-7}\)= \(\frac{10}{1}\)= 10
Vậy với giá trị nguyên n = 8 thi P đạt giá trị lớn nhất là 10
A=2
=>2n-6=n+12
=>n=18
A=4/7
=>(n+12)/(n-3)=4/7
=>7n+84=4n-12
=>3n=-96
=>n=-32
A=1/4
=>(n+12)/(n-3)=1/4
=>4n+48=n-3
=>3n=-51
=>n=-17
\(\frac{n+7}{n+4}=\frac{n+4+3}{n+4}=1+\frac{3}{n+4}\)
vay de ps dat gia tri nguyen thi 3 phai chia het cho n+4
n+4\(\in U\left(3\right)=\left\{1,-1,3,-3\right\}\)
\(\Rightarrow n\in\left\{-3,-5,-1,-7\right\}\)