Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(M=\dfrac{2n+1}{n-1}\) xác định khi n - 1 ≠ 0 hay n ≠ 1
Vì n ϵ Z nên 2n + 1 ϵ Z và n - 1 ϵ Z, suy ra M ϵ Q
Vậy n ϵ {Z | n ≠ 1}
Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
mong các bn đừng làm như vậy nah
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho!
Với 2n+1 >= 0 => n>= -1/2
Để 2n + 1 (>00) chia hết cho n2 + n + 1 thì \(2n+1\ge n^2+n+1\Rightarrow n^2-n\le0\Rightarrow0\le n\le1\)mà n >= -1/2 và thuộc Z => n = 0;1. (1)
Với 2n+1 < 0 => n < -1/2
Để 2n + 1 (<0) chia hết cho n2 + n + 1 thì \(\left|2n+1\right|\ge n^2+n+1\Rightarrow-2n-1\ge n^2+n+1\Rightarrow n^2+3n+2\le0\Rightarrow\left(n+1\right)\left(n+2\right)\le0\Rightarrow-2\le n\le-1\)
mà n thuộc Z => n = -2;-1.
Thử vào ta được:
n | 2n+1 | n2 + n + 1 | Kết Luận | |
-2 | -3 | 3 | -3 chia hết cho 3 | TM |
-1 | -1 | 1 | -1 chia hết cho 1 | TM |
0 | 1 | 1 | 1 chia hết cho 1 | TM |
1 | 3 | 3 | 3 chia hết cho 3 | TM |
Vậy có 4 giá trị của n là {-2;-1;0;1} để 2n+1 chia hết cho n2 + n + 1.
Lồn ***** Mẹ
Đéo trả lời đó! Lồn
Cặc ***** Hoc24.vn như Cấy Lồn
n=2
mình thử: 2n-\(\dfrac{1}{n-1}\)= 2*2-\(\dfrac{1}{2-1}\)=4-\(\dfrac{1}{1}\) =4-1=3
<=> để n là số nguyên <=> n=2
Bài 1:
Để \(A=\frac{a-5}{10-a}\) là số hữu tỉ dương
=> \(a-5\ge0\Rightarrow a\ge5\)
\(10-a\ge0\Rightarrow a\ge10\)
KL: a lớn hơn hoặc bằng 10 thì A là 1 số hữu tỉ dương
Bài 2: tìm n thuộc Z, để x = 2n-1/n-1 ; y = n-1/2n-1 là số nguyên ( bài 2 bn thiếu điều kiện thì phải
a) ta có: \(x=\frac{2n-1}{n-1}=\frac{2n-2+1}{n-1}=\frac{2.\left(n-1\right)+1}{n-1}=2+\frac{1}{n-1}\)
Để x nguyên
=> 1/n-1 nguyên
=> 1 chia hết cho n-1
=> n - 1 thuộc Ư(1)={1;-1}
nếu n - 1 = 1 => n = 2 (TM)
n-1 = -1 => n = 0 (TM)
KL:...
b) Để y nguyên
\(\Rightarrow\frac{n-1}{2n-1}\) nguyên
=> n - 1 chia hết cho 2n - 1
=> 2n - 2 chia hết cho 2n - 1
2n - 1 - 1 chia hết cho 2n - 1
mà 2n-1 chia hết cho 2n - 1
=> 1 chia hết cho 2n - 1
=> 2n - 1 thuộc Ư(1)={1;-1}
nếu 2n - 1 = 1 => 2n = 2 => n = 1 (TM)
2n - 1 = - 1 => 2n = 0 => n = 0 (TM)
KL:..
linh cx đã làm đc đâu
Linh chưa làm được à, căng hè. Trong lớp có ai làm được chưa