K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

12 tháng 5 2021

Câu 1:

gọi n-1/n-2 là M.

Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1

Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)

Gọi d = ƯCLN (n - 1; n - 2) 

=> n - 1 - (n - 2) ⋮⋮d       *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1

=> 1 ⋮⋮d

=> d ∈∈Ư (1)

Ư (1) = {1}

=> d = 1

Mà ngay từ lúc đầu d phải bằng 1 rồi.

Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.

6 tháng 3 2018

giúp mình nha !

15 tháng 3 2020

Mọi người ghi cả cách giải nhé

a) Gọi \(d\)là \(ƯC\left(n+4;n+3\right)\)\(\left(d\ne0;d\in Z\right)\)

\(\Rightarrow n+4⋮d;n+3⋮d\)

\(\Rightarrow n+4-n+3⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy \(\frac{n+4}{n+3}\)là phân số tối giản.

b) Gọi \(d\)là \(ƯC\left(2n+1;n+1\right)\)

\(\Rightarrow2n+1⋮d;n+1⋮d\)

\(\Rightarrow2n+1⋮d;2\left(n+1\right)⋮d\)

\(hay\)\(2n+1⋮d;2n+2⋮d\)

\(\Rightarrow2n+2-2n+1\)\(⋮\)\(d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy \(\frac{2n+1}{n+1}\)là phân số tối giản.