Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(\frac{12}{n}\)có giá trị là 1 số nguyên thì 12\(⋮\)n
\(\Rightarrow n\in\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Vậy \(n\in\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Để \(\frac{15}{n-2}\)có giá trị là 1 số nguyên thì 15\(⋮\)n-2
\(\Rightarrow n-2\inƯ\left(15\right)=\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
Ta có bảng sau :
n-2 | -1 | 1 | -3 | 3 | -5 | 5 | -15 | 15 |
n | 1 | 3 | -1 | 5 | -3 | 7 | -13 | 17 |
Vậy n\(\in\){-13;-3;-1;1;3;5;7;17}
Để \(\frac{8}{n+1}\)có giá trị là 1 số nguyên thì 8\(⋮\)n+1
\(\Rightarrow n+1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
...
Để 12/n có giá trị nguyên thì n \(\in\)Ư(12)
Suy ra N\(\in\){1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}
Để 15/n-12 nguyên thì (n-12)\(\in\)Ư(15)
Suy ra (n-12)\(\in\){-1;1;15;-15}
<=> N\(\in\){11;13;27;-3}
Để 8/n+1 nguyên thì (n+1)\(\in\)Ư(8)
Suy ra (n+1)\(\in\){1;-1;2;-2;4;-4;8;-8}
<=> n\(\in\){0;-2;1;-3;3;-5;7;-9}
a,Để n nguyên thì 12 : n
=>nEƯ(12)
=>nE{1,2,3,4,6,12,-1,-2,-3,-4,-6,-12}
b,Để n nguyên thì 15:n-2
=>n-2EƯ(15)
=>n-2E{1,3,5,15,-1,-3,-5,-15}
=>nE{3,5,7,17,1,-1,-3,-13}
c,Để n nguyên thì 8:n
=>n+1EƯ(8)
=>n+1E{1,2,4,8,-1,-2,-4,-8}
=>nE{0,1,3,7,-2,-3,-5,-9}
-12 phần n, n thuộc Ư(8)
15 phần n-2, n-2 thuộc Ư(15),n={ -1, -3, 5, 7, 17, 1, 3, -13}
8 phần n+1, n+1 thuộc Ư(8),n ={0, 1, 2, 3, -3, -5, 7, -9}
Ta có: Để \(\frac{12}{3n-1}\)là số nguyên <=> 12 \(⋮\)3n - 1 <=> 3n - 1 \(\in\)Ư(12) = {1; -1; 2; -2; 3; -3; 4; -4; 6; -6; 12; -12}
Lập bảng :
3n -1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
n | 2/3 | 0 | 1 | -1/3 | 4/3 | -2/3 | 5/3 | -1 | 7/3 | -5/3 | 13/3 | -11/3 |
Vì n thuộc Z nên ...