K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2016

n=0 hoặc bằng n=4

9 tháng 2 2016

Ta có : 2n - 7 = 2n - 1 - 8 

Mà 2n - 1 chia hết cho n - 1

=> 8 chia hết cho n-1

=> n-1 \(\in\)Ư(8)

Sau đó bạn làm tương tự nha

 

11 tháng 1 2016

Ta co 

(n-3) CHC (n+1)

-> n+1CHC n+1

->(n-3)-(n+1) CHC (n+1)

->      -4            CHC (n+1)

->n+1={1;-1;2;-2;4;-4}

->n={0;-2;1;-3;3;-5}

 

11 tháng 1 2016

a) sai đề

b)2n-5 chia hết cho n+1=>(2n+2)-(5-2)=> 3 : n+1 => n+1={1;3}=>n={0;2}

17 tháng 6 2016

1./ Do 2n + 1 là số lẻ nên n2 - 2n + 4 chia hết cho 2n+1 thì 4(n2 - 2n + 4) cũng chia hết cho 2n + 1 (nhân số 4 chẵn ko tăng thêm ước cho 2n + 1)

mà: B = 4(n2 - 2n + 4) = 4n2 + 4n + 1 - 12n - 6 + 21 = (2n + 1)2 - 6(2n+1) + 21 = (2n + 1)(2n + 1 - 6) +21 = (2n + 1)(2n - 5) + 21

=> B chia hết cho 2n + 1 <=> 21 chia hết cho 2n + 1.

=> 2n + 1 thuộc U (21) = {-21;-7;-3;-1;1;3;7;21}

Khi đó n = -11; -4 ; -2; -1 ; 0 ; 1; 3 ; 10.

2./ C = 2n2 + 8n + 11 = 2n2 +4n + 4n + 8 + 3 = 2n(n + 2) + 4(n + 2) + 3 = (n + 2)(2n + 4) + 3

để 2n2 + 8n + 11 chia hết cho n + 2 thì n + 2 phải là U(3) = {-3; -1; 1; 3)

Khi đó n = -5 ; -3 ; -1 ; 1

5 tháng 1 2016

a)n+2={1;2;4;8;16}

n={-1;0;2;6;14}

b)(n-4)chia hết cho(n-1)

(n-1-3) chia hết cho(n-1)

Vì (n-1)chia hết cho (n-1) suy ra -3 chia hết cho (n-1)

Vậy n-1 thuộc Ư(-3)={1;3;-1;-3}

suy ra n={1;4;0;-2}

c) 2n+8 thuộc B(n+1)

suy ra n+1 chia het cho 2n+8

suy ra 2n+2 chia het cho 2n+8

suy ra (2n+8)-6 chia het cho2n+8

Vi 2n+8 chia het cho 2n+8 nen -6 chia het cho 2n+8

suy ra 2n+8 thuộc {1;2;3;6;-1;-2;-3;-6}

mà 2n+8 là số nguyên chẵn( chẵn + chẵn = chẵn)

suy ra 2n+8 thuộc{2;6;-2;-6}

suy ra 2n thuộc{-6;-2;-10;-14}

suy ra n thuộc {-3;-1;-5;-7}

d) 3n-1 chia het cho n-2

suy ra [(3n-6)+5chia hết cho n-2

Vì 3n-6 chia hết cho n-2 suy ra 5 chia hết cho n-2

suy ra n-2 thuộc{1;5;-1;-5}

suy ra n thuộc{3;7;1;-3}

e)3n+2 chia hết cho 2n+1

suy ra [(6n+3)+1] chia hết cho 2n+1

Vì 6n+3 chia hết cho 2n+1 nên 1 chia hết cho 2n+1

suy ra 2n+1 thuộc{1;-1}

suy ra 2n thuộc {0;-2}

suy ra n thuộc {0;-1}

 

4 tháng 11 2018

a) ta có: 2n + 7 chia hết cho n + 2

2n + 4 + 3 chia hết cho n + 2

2.(n+2) + 3 chia hết cho n+2

mà 2.(n+2) chia hết cho n + 2

=> 3 chia hết cho n + 2

...

bn tự làm tiếp nha

b) ta có: 3n + 10 chia hết cho n - 3

3n -9 + 19 chia hết chi n - 3

3.(n-3)+19 chia hết cho n - 3

=>...

22 tháng 2 2019

(3n+2):(n-1) = 3 + 5/(n-1) 
a)Để 3n+2 chia hêt cho n-1 
thì n-1 phải là ước của 5 
do đó: 
n-1 = 1 => n = 2 
n-1 = -1 => n = 0 
n-1 = 5 => n = 6 
n-1 = -5 => n = -4 
Vậy n = {-4; 0; 2; 6} 
thì 3n+2 chia hêt cho n-1.

22 tháng 2 2019

c)3n+2 chia hết cho 2n-1

6n-3n+2 chia hết cho 2n-1

3(2n-1)+2 chia hết cho 2n-1

=>2 chia hết cho 2n-1 hay 2n-1 thuộc Ư(2)={1;-1;2;-2}

=>2n thuộc{2;0;3;-1}

=>n thuộc{1;0}

12 tháng 1 2017

\(\Rightarrow\)2(n-7) - (2n+3) \(⋮\)2n+3

\(\Rightarrow\)(2n-14) - (2n+3) \(⋮\)2n+3

\(\Rightarrow\)2n - 14 - 2n - 3  \(⋮\)2n+3

\(\Rightarrow\)-17                   \(⋮\)2n+3

\(\Rightarrow2n+3\inƯ\left(-17\right)=\left(1;-1;17;-17\right)\)

ta có bảng sau :

2n+3           1                      -1                            17                      -17

n                -1                     -2                             7                       -10

mà \(n\in Z\)

\(\Rightarrow n\in\left(-1;-2;7;-10\right)\)

12 tháng 1 2017

theo bài ra ta có:\

\(\left(n-7\right)⋮\left(2n+3\right)\) 

=> (n - 7) - (2n+3) \(⋮2n+3\) 

=> \(2\left(n-7\right)-\left(2n+3\right)⋮2n+3\) 

=> \(2n-4-2n-3⋮2n+3\) 

=> \(-7⋮2n+3\) 

=> 2n+3 E Ư(-7) = { 1;-1;7;-7 }

ta có bảng sau:

2n+31-17-7
2n-2-44-10
n-1-22-5

vậy n ={ -1;-2;2;-5 }

DD
24 tháng 5 2021

\(7⋮\left(2n-3\right)\Leftrightarrow2n-3\inƯ\left(7\right)=\left\{-7,-1,1,7\right\}\)

\(\Leftrightarrow2n\in\left\{-4,2,4,10\right\}\Leftrightarrow n\in\left\{-2,1,2,5\right\}\).